2019年7月23日火曜日

学習環境

解析入門(上) (松坂和夫 数学入門シリーズ 4) (松坂 和夫(著)、岩波書店)の第5章(各種の初等関数)、5.1(対数関数・指数関数)、問題5の解答を求めてみる。


  1. d n + 1 dx n + 1 x n log x = d n d x n d dx x n log x = d n d x n n x n - 1 log x + x n · 1 x = n d n d x n x n - 1 log x + d n d x n x n - 1 = n · n - 1 ! x = n ! x

    よって帰納法により 成り立つ。

    (証明終)

コード

Python 3

#!/usr/bin/env python3
from sympy import pprint, symbols, plot, log, Derivative, factorial

print('5.')


x = symbols('x')
n = symbols('n', nonnegative=True, integer=True)
f = x ** n * log(x)
g = factorial(n) / x
d = Derivative(f, x)
for n0 in range(10):
    print(f'n = {n0}')
    fn = f.subs({n: n0})
    d = Derivative(fn, x, n0 + 1)
    gn = g.subs({n: n0})
    for o in [fn, gn, d, d.doit(), d.doit() == gn]:
        pprint(o)
        print()

ns = range(5)
p = plot(*[x ** n0 for n0 in ns],
         log(x),
         *[x ** n0 * log(x) for n0 in ns],
         (x, 0.1, 5.1),
         ylim=(0, 5),
         legend=True,
         show=False)
colors = ['red', 'green', 'blue', 'brown', 'orange',
          'purple', 'pink', 'gray', 'skyblue', 'yellow']

for o, color in zip(p, colors):
    o.line_color = color

p.show()
p.save('sample5.png')

入出力結果(Bash、cmd.exe(コマンドプロンプト)、Terminal、Jupyter(IPython))

C:\Users\...>py sample5.py
5.
n = 0
log(x)

1
─
x

d         
──(log(x))
dx        

1
─
x

True

n = 1
x⋅log(x)

1
─
x

  2          
 d           
───(x⋅log(x))
  2          
dx           

1
─
x

True

n = 2
 2       
x ⋅log(x)

2
─
x

  3           
 d ⎛ 2       ⎞
───⎝x ⋅log(x)⎠
  3           
dx            

2
─
x

True

n = 3
 3       
x ⋅log(x)

6
─
x

  4           
 d ⎛ 3       ⎞
───⎝x ⋅log(x)⎠
  4           
dx            

6
─
x

True

n = 4
 4       
x ⋅log(x)

24
──
x 

  5           
 d ⎛ 4       ⎞
───⎝x ⋅log(x)⎠
  5           
dx            

24
──
x 

True

n = 5
 5       
x ⋅log(x)

120
───
 x 

  6           
 d ⎛ 5       ⎞
───⎝x ⋅log(x)⎠
  6           
dx            

120
───
 x 

True

n = 6
 6       
x ⋅log(x)

720
───
 x 

  7           
 d ⎛ 6       ⎞
───⎝x ⋅log(x)⎠
  7           
dx            

720
───
 x 

True

n = 7
 7       
x ⋅log(x)

5040
────
 x  

  8           
 d ⎛ 7       ⎞
───⎝x ⋅log(x)⎠
  8           
dx            

5040
────
 x  

True

n = 8
 8       
x ⋅log(x)

40320
─────
  x  

  9           
 d ⎛ 8       ⎞
───⎝x ⋅log(x)⎠
  9           
dx            

40320
─────
  x  

True

n = 9
 9       
x ⋅log(x)

362880
──────
  x   

 10            
d   ⎛ 9       ⎞
────⎝x ⋅log(x)⎠
  10           
dx             

362880
──────
  x   

True


C:\Users\...>

0 コメント:

コメントを投稿

関連コンテンツ