学習環境
- Surface 3 (4G LTE)、Surface 3 タイプ カバー、Surface ペン(端末)
- Windows 10 Pro (OS)
- 数式入力ソフト(TeX, MathML): MathType
- MathML対応ブラウザ: Firefox、Safari
- MathML非対応ブラウザ(Internet Explorer, Microsoft Edge, Google Chrome...)用JavaScript Library: MathJax
- 参考書籍
解析入門 原書第3版 (S.ラング(著)、松坂 和夫(翻訳)、片山 孝次(翻訳)、岩波書店)の第2部(微分と基本的な関数)、第8章(指数関数と対数関数)、2(指数関数)、練習問題6.を取り組んでみる。
-
-
n = 1のとき。
よって、n = 1の場合は成り立つ。
ゆえに、帰納法により任意の整数 n ≥ 1に対して成り立つ。(証明終)
-
n = 1のとき。
よって、n = 1 の場合は成り立つ。
よって帰納法より、任意の整数 n ≥ 1 に対し成り立つ。(証明終)
-
n = 0のとき。
第1次導関数について成り立つ。
よって帰納法より、任意の整数n ≥ 0 に対して成り立つ。(証明終)
-
コード(Emacs)
Python 3
#!/usr/bin/env python3 from sympy import pprint, symbols, Derivative, exp, log, factorial, plot print('6.') x = symbols('x') n = symbols('n', integer=True) fs = [(x * exp(x), (x + n) * exp(x)), (x * exp(-x), (-1) ** n * (x - n) * exp(-x)), (x ** (n - 1) * log(x), factorial(n - 1) / x)] for i, (f, fn) in enumerate(fs): print(f'({chr(ord("a") + i)})') for t in [f, fn]: pprint(t) print() for n0 in range(1, 11): print(Derivative(f.subs({n: n0}), x, n0).doit().factor() == fn.subs({n: n0})) print() p = plot(*map(lambda x: x[0].subs({n: 1}), fs), show=False, legend=True) for i, color in enumerate(['red', 'green', 'blue']): p[i].line_color = color p.save('sample6.svg')
入出力結果(Terminal, Jupyter(IPython))
$ ./sample6.py 6. (a) x x⋅ℯ x (n + x)⋅ℯ True True True True True True True True True True (b) -x x⋅ℯ n -x (-1) ⋅(-n + x)⋅ℯ True True True True True True True True True True (c) n - 1 x ⋅log(x) (n - 1)! ──────── x True True True True True True True True True True $
HTML5
<div id="graph0"></div> <pre id="output0"></pre> <label for="r0">r = </label> <input id="r0" type="number" min="0" value="0.5"> <label for="dx">dx = </label> <input id="dx" type="number" min="0" step="0.001" value="0.001"> <br> <label for="x1">x1 = </label> <input id="x1" type="number" value="-5"> <label for="x2">x2 = </label> <input id="x2" type="number" value="5"> <br> <label for="y1">y1 = </label> <input id="y1" type="number" value="-5"> <label for="y2">y2 = </label> <input id="y2" type="number" value="5"> <br> <label for="dx0">dx0 = </label> <input id="dx0" type="number" min="0" step="0.1" value="0.1"> <label for="n0">n0 = </label> <input id="n0" type="number" min="0" step="1" min="1" value="1"> <button id="draw0">draw</button> <button id="clear0">clear</button> <script type="text/javascript" src="https://cdnjs.cloudflare.com/ajax/libs/d3/4.2.6/d3.min.js" integrity="sha256-5idA201uSwHAROtCops7codXJ0vja+6wbBrZdQ6ETQc=" crossorigin="anonymous"></script> <script src="sample6.js"></script>
JavaScript
let div0 = document.querySelector('#graph0'), pre0 = document.querySelector('#output0'), width = 600, height = 600, padding = 50, btn0 = document.querySelector('#draw0'), btn1 = document.querySelector('#clear0'), input_r = document.querySelector('#r0'), input_dx = document.querySelector('#dx'), input_x1 = document.querySelector('#x1'), input_x2 = document.querySelector('#x2'), input_y1 = document.querySelector('#y1'), input_y2 = document.querySelector('#y2'), input_dx0 = document.querySelector('#dx0'), input_n0 = document.querySelector('#n0'), inputs = [input_r, input_dx, input_x1, input_x2, input_y1, input_y2, input_dx0, input_n0], p = (x) => pre0.textContent += x + '\n', range = (start, end, step=1) => { let res = []; for (let i = start; i < end; i += step) { res.push(i); } return res; }; let draw = () => { pre0.textContent = ''; let r = parseFloat(input_r.value), dx = parseFloat(input_dx.value), x1 = parseFloat(input_x1.value), x2 = parseFloat(input_x2.value), y1 = parseFloat(input_y1.value), y2 = parseFloat(input_y2.value), dx0 = parseFloat(input_dx0.value), n0 = parseInt(input_n0.value, 10); if (r === 0 || dx === 0 || x1 > x2 || y1 > y2) { return; } let points = [], lines = [], f = (x) => (x + (n0 - 1)) * Math.exp(x), f1 = (x) => (x + n0) * Math.exp(x), g = (x0) => (x) => f1(x0) * (x - x0) + f(x0), fns = [[f, 'red']], fns1 = [], fns2 = [[g, 'green']]; fns .forEach((o) => { let [f, color] = o; for (let x = x1; x <= x2; x += dx) { let y = f(x); points.push([x, y, color]); } }); fns1 .forEach((o) => { let [f, color] = o; lines.push([x1, f(x1), x2, f(x2), color]); }); fns2 .forEach((o) => { let [f, color] = o; for (let x = x1; x <= x2; x += dx0) { let g = f(x); lines.push([x1, g(x1), x2, g(x2), color]); } }); let xscale = d3.scaleLinear() .domain([x1, x2]) .range([padding, width - padding]); let yscale = d3.scaleLinear() .domain([y1, y2]) .range([height - padding, padding]); let xaxis = d3.axisBottom().scale(xscale); let yaxis = d3.axisLeft().scale(yscale); div0.innerHTML = ''; let svg = d3.select('#graph0') .append('svg') .attr('width', width) .attr('height', height); svg.selectAll('line') .data([[x1, 0, x2, 0], [0, y1, 0, y2]].concat(lines)) .enter() .append('line') .attr('x1', (d) => xscale(d[0])) .attr('y1', (d) => yscale(d[1])) .attr('x2', (d) => xscale(d[2])) .attr('y2', (d) => yscale(d[3])) .attr('stroke', (d) => d[4] || 'black'); svg.selectAll('circle') .data(points) .enter() .append('circle') .attr('cx', (d) => xscale(d[0])) .attr('cy', (d) => yscale(d[1])) .attr('r', r) .attr('fill', (d) => d[2] || 'green'); svg.append('g') .attr('transform', `translate(0, ${height - padding})`) .call(xaxis); svg.append('g') .attr('transform', `translate(${padding}, 0)`) .call(yaxis); [fns, fns1, fns2].forEach((fs) => p(fs.join('\n'))); }; inputs.forEach((input) => input.onchange = draw); btn0.onclick = draw; btn1.onclick = () => pre0.textContent = ''; draw();
0 コメント:
コメントを投稿