2017年9月19日火曜日

学習環境

ラング線形代数学(上)(S.ラング (著)、芹沢 正三 (翻訳)、ちくま学芸文庫)の1章(R^n におけるベクトル)、3(スカラー積)、練習問題7.を取り組んでみる。


  1. sin( nx+mx )=sinnxcosmx+cosnxsinmx sin( nxmx )=sinnxcosmxcosnxsinmx sin( nx )cos( mx ) = 1 2 ( sin( nx+mx )+sin( nxmx ) ) = 1 2 ( sin( ( n+m )x )+sin( ( nm )x ) ) 1 1 sin( nx )cos( mx )dx = 1 2 1 1 ( sin( ( n+m )x )+sin( ( nm )x ) )dx =0

    (正弦(sine) は奇関数。)

    よって、問題5によって定義されたスカラー積に関してsin nx、cos mx はたがいに直交している。

コード(Emacs)

Python 3

#!/usr/bin/env python3
# -*- coding: utf-8 -*-

from sympy import pprint, symbols, Integral, sin, cos

m, n = symbols('m n', integer=True)
x = symbols('x')
I = Integral(sin(n * x) * cos(m * x), (x, -1, 1))
for g in [I, I.doit()]:
    pprint(g)
    print()

入出力結果(Terminal, Jupyter(IPython))

$ ./sample7.py
1                      
⌠                      
⎮  sin(n⋅x)⋅cos(m⋅x) dx
⌡                      
-1                     

0

$

HTML5

<div id="graph0"></div>
<pre id="output0"></pre>
<label for="r0">r = </label>
<input id="r0" type="number" min="0" value="0.5">
<label for="dx">dx = </label>
<input id="dx" type="number" min="0" step="0.0001" value="0.001">
<br>
<label for="x1">x1 = </label>
<input id="x1" type="number" value="-5">
<label for="x2">x2 = </label>
<input id="x2" type="number" value="5">
<br>
<label for="y1">y1 = </label>
<input id="y1" type="number" value="-5">
<label for="y2">y2 = </label>
<input id="y2" type="number" value="5">
<br>
<label for="n0">n = </label>
<input id="n0" type="number" step="1" value="1">
<label for="m0">m = </label>
<input id="m0" type="number" step="1" value="2">

<button id="draw0">draw</button>
<button id="clear0">clear</button>

<script type="text/javascript" src="https://cdnjs.cloudflare.com/ajax/libs/d3/4.2.6/d3.min.js" integrity="sha256-5idA201uSwHAROtCops7codXJ0vja+6wbBrZdQ6ETQc=" crossorigin="anonymous"></script>

<script src="sample7.js"></script>    

JavaScript

let div0 = document.querySelector('#graph0'),
    pre0 = document.querySelector('#output0'),
    width = 600,
    height = 600,
    padding = 50,
    btn0 = document.querySelector('#draw0'),
    btn1 = document.querySelector('#clear0'),
    input_r = document.querySelector('#r0'),
    input_dx = document.querySelector('#dx'),
    input_x1 = document.querySelector('#x1'),
    input_x2 = document.querySelector('#x2'),
    input_y1 = document.querySelector('#y1'),
    input_y2 = document.querySelector('#y2'),
    input_n0 = document.querySelector('#n0'),
    input_m0 = document.querySelector('#m0'),
    inputs = [input_r, input_dx, input_x1, input_x2, input_y1, input_y2,
              input_n0, input_m0],
    p = (x) => pre0.textContent += x + '\n',
    range = (start, end, step=1) => {
        let res = [];
        for (let i = start; i < end; i += step) {
            res.push(i);
        }
        return res;
    };

let fx13 = (x) => 2 * x / (1 + x ** 2),
    fy13_1 = (y) => (-Math.sqrt(-(y ** 2) + 1) + 1) / y,
    fy13_2 = (y) => (Math.sqrt(-(y ** 2) + 1) + 1) / y;

let draw = () => {
    pre0.textContent = '';

    let r = parseFloat(input_r.value),
        dx = parseFloat(input_dx.value),
        x1 = parseFloat(input_x1.value),
        x2 = parseFloat(input_x2.value),
        y1 = parseFloat(input_y1.value),
        y2 = parseFloat(input_y2.value),
        n0 = parseInt(input_n0.value, 10),
        m0 = parseInt(input_m0.value, 10);
        

    if (r === 0 || dx === 0 || x1 > x2 || y1 > y2) {
        return;
    }    

    let points = [],
        lines = [[-1, y1, -1, y2, 'red'],
                 [1, y1, 1, y2, 'red']],
        f = (x) => Math.sin(n0 * x),
        g = (x) => Math.cos(m0 * x),
        h = (x) => f(x) * g(x),
        fns = [[f, 'green'],
               [g, 'blue'],
               [h, 'orange']],
        fns1 = [],
        fns2 = [];

    fns
        .forEach((o) => {
            let [f, color] = o;
            for (let x = x1; x <= x2; x += dx) {
                let y = f(x);

                points.push([x, y, color]);
            }
        });
    
    fns2
        .forEach((o) => {
            let [f, color] = o;

            for (let x = x1; x <= x2; x += dx0) {
                let g = f(x);
                lines.push([x1, g(x1), x2, g(x2), color]);
            }
        });
    
    let xscale = d3.scaleLinear()
        .domain([x1, x2])
        .range([padding, width - padding]);
    let yscale = d3.scaleLinear()
        .domain([y1, y2])
        .range([height - padding, padding]);

    let xaxis = d3.axisBottom().scale(xscale);
    let yaxis = d3.axisLeft().scale(yscale);
    div0.innerHTML = '';
    let svg = d3.select('#graph0')
        .append('svg')
        .attr('width', width)
        .attr('height', height);

    svg.selectAll('line')
        .data([[x1, 0, x2, 0], [0, y1, 0, y2]].concat(lines))
        .enter()
        .append('line')
        .attr('x1', (d) => xscale(d[0]))
        .attr('y1', (d) => yscale(d[1]))
        .attr('x2', (d) => xscale(d[2]))
        .attr('y2', (d) => yscale(d[3]))
        .attr('stroke', (d) => d[4] || 'black');

    svg.selectAll('circle')
        .data(points)
        .enter()
        .append('circle')
        .attr('cx', (d) => xscale(d[0]))
        .attr('cy', (d) => yscale(d[1]))
        .attr('r', r)
        .attr('fill', (d) => d[2] || 'green');

    svg.append('g')
        .attr('transform', `translate(0, ${height - padding})`)
        .call(xaxis);

    svg.append('g')
        .attr('transform', `translate(${padding}, 0)`)
        .call(yaxis);

    [fns, fns1, fns2].forEach((fs) => p(fs.join('\n')));
};

inputs.forEach((input) => input.onchange = draw);
btn0.onclick = draw;
btn1.onclick = () => pre0.textContent = '';
draw();








0 コメント:

コメントを投稿