学習環境
- Surface 3 (4G LTE)、Surface 3 タイプ カバー、Surface ペン(端末)
- Windows 10 Pro (OS)
- 数式入力ソフト(TeX, MathML): MathType
- MathML対応ブラウザ: Firefox、Safari
- MathML非対応ブラウザ(Internet Explorer, Microsoft Edge, Google Chrome...)用JavaScript Library: MathJax
- 参考書籍
数学読本〈5〉微分法の応用/積分法/積分法の応用/行列と行列式(松坂 和夫(著)、岩波書店)の第19章(細分による加法 - 積分法)、19.2(不定積分の計算)、置換積分法、問11.を取り組んでみる。
コード(Emacs)
Python 3
#!/usr/bin/env python3
# -*- coding: utf-8 -*-
from sympy import pprint, symbols, Integral, sin, cos, sqrt, exp, pi, plot
print('11.')
x, n, b = symbols('x n b')
a = symbols('a', nonzero=True)
fs = [(x + 2) ** 10,
(1 - 5 * x) ** 3,
6 / (1 - 2 * x) ** 4,
1 / (2 * x - 3),
sqrt(4 - x),
1 / sqrt(2 * x + 3),
(a * x + b) ** n,
sin(5 * x),
cos(pi / 3 - x / 2),
sin(a * x + b),
cos(a * x + b),
exp(-4 * x),
exp(a * x + b)]
for i, f in enumerate(fs, 1):
print(f'({i})')
I = Integral(f, x)
for o in [I, I.doit()]:
pprint(o)
print()
try:
p = plot(f, show=False, legend=True)
p.save(f'sample11_{i}.svg')
except Exception as err:
print(type(err), err)
print()
入出力結果(Terminal, IPython)
$ ./sample11.py
11.
(1)
⌠
⎮ 10
⎮ (x + 2) dx
⌡
11
x 10 9 8 7 6 5 4 3
─── + 2⋅x + 20⋅x + 120⋅x + 480⋅x + 1344⋅x + 2688⋅x + 3840⋅x + 3840⋅x
11
2
+ 2560⋅x + 1024⋅x
(2)
⌠
⎮ 3
⎮ (-5⋅x + 1) dx
⌡
4 2
125⋅x 3 15⋅x
- ────── + 25⋅x - ───── + x
4 2
(3)
⌠
⎮ 6
⎮ ─────────── dx
⎮ 4
⎮ (-2⋅x + 1)
⌡
-6
────────────────────────
3 2
48⋅x - 72⋅x + 36⋅x - 6
(4)
⌠
⎮ 1
⎮ ─────── dx
⎮ 2⋅x - 3
⌡
log(2⋅x - 3)
────────────
2
(5)
⌠
⎮ ________
⎮ ╲╱ -x + 4 dx
⌡
3/2
-2⋅(-x + 4)
───────────────
3
(6)
⌠
⎮ 1
⎮ ─────────── dx
⎮ _________
⎮ ╲╱ 2⋅x + 3
⌡
_________
╲╱ 2⋅x + 3
(7)
⌠
⎮ n
⎮ (a⋅x + b) dx
⌡
⎧ log(a⋅x + b) for n = -1
⎪
⎪ n + 1
⎨(a⋅x + b)
⎪────────────── otherwise
⎪ n + 1
⎩
───────────────────────────
a
<class 'ValueError'> The same variable should be used in all univariate expressions being plotted.
(8)
⌠
⎮ sin(5⋅x) dx
⌡
-cos(5⋅x)
──────────
5
(9)
⌠
⎮ ⎛x π⎞
⎮ sin⎜─ + ─⎟ dx
⎮ ⎝2 6⎠
⌡
⎛x π⎞
-2⋅cos⎜─ + ─⎟
⎝2 6⎠
(10)
⌠
⎮ sin(a⋅x + b) dx
⌡
-cos(a⋅x + b)
──────────────
a
<class 'ValueError'> The same variable should be used in all univariate expressions being plotted.
(11)
⌠
⎮ cos(a⋅x + b) dx
⌡
sin(a⋅x + b)
────────────
a
<class 'ValueError'> The same variable should be used in all univariate expressions being plotted.
(12)
⌠
⎮ -4⋅x
⎮ ℯ dx
⌡
-4⋅x
-ℯ
───────
4
(13)
⌠
⎮ a⋅x + b
⎮ ℯ dx
⌡
a⋅x + b
ℯ
────────
a
<class 'ValueError'> The same variable should be used in all univariate expressions being plotted.
$
HTML5
<div id="graph0"></div> <pre id="output0"></pre> <label for="r0">r = </label> <input id="r0" type="number" min="0" value="0.5"> <label for="dx">dx = </label> <input id="dx" type="number" min="0" step="0.0001" value="0.001"> <br> <label for="x1">x1 = </label> <input id="x1" type="number" value="-10"> <label for="x2">x2 = </label> <input id="x2" type="number" value="10"> <br> <label for="y1">y1 = </label> <input id="y1" type="number" value="-10"> <label for="y2">y2 = </label> <input id="y2" type="number" value="10"> <br> <label for="a0">a = </label> <input id="a0" type="number" value="2"> <label for="b0">b = </label> <input id="b0" type="number" value="3"> <label for="n0">n = </label> <input id="n0" type="number" value="4"> <button id="draw0">draw</button> <button id="clear0">clear</button> <script type="text/javascript" src="https://cdnjs.cloudflare.com/ajax/libs/d3/4.2.6/d3.min.js" integrity="sha256-5idA201uSwHAROtCops7codXJ0vja+6wbBrZdQ6ETQc=" crossorigin="anonymous"></script> <script src="sample11.js"></script>
JavaScript
let div0 = document.querySelector('#graph0'),
pre0 = document.querySelector('#output0'),
width = 600,
height = 600,
padding = 50,
btn0 = document.querySelector('#draw0'),
btn1 = document.querySelector('#clear0'),
input_r = document.querySelector('#r0'),
input_dx = document.querySelector('#dx'),
input_x1 = document.querySelector('#x1'),
input_x2 = document.querySelector('#x2'),
input_y1 = document.querySelector('#y1'),
input_y2 = document.querySelector('#y2'),
input_a0 = document.querySelector('#a0'),
input_b0 = document.querySelector('#b0'),
input_n0 = document.querySelector('#n0'),
inputs = [input_r, input_dx, input_x1, input_x2, input_y1, input_y2,
input_a0, input_b0, input_n0],
p = (x) => pre0.textContent += x + '\n',
range = (start, end, step=1) => {
let res = [];
for (let i = start; i < end; i += step) {
res.push(i);
}
return res;
};
let draw = () => {
pre0.textContent = '';
let r = parseFloat(input_r.value),
dx = parseFloat(input_dx.value),
x1 = parseFloat(input_x1.value),
x2 = parseFloat(input_x2.value),
y1 = parseFloat(input_y1.value),
y2 = parseFloat(input_y2.value),
a0 = parseFloat(input_a0.value),
b0 = parseFloat(input_b0.value),
n0 = parseFloat(input_n0.value);
if (r === 0 || dx === 0 || x1 > x2 || y1 > y2 || a0 <= 0 || a0 === 0 ||
n0 === -1) {
return;
}
let points = [],
lines = [],
f7 = (x) => (a0 * x + b0) ** n0,
f10 = (x) => Math.sin(a0 * x + b0),
f11 = (x) => Math.cos(a0 * x + b0),
f13 = (x) => Math.exp(a0 * x + b0),
fns = [[f7, 'red'],
[f10, 'green'],
[f11, 'blue'],
[f13, 'orange']],
fns1 = [],
fns2 = [];
fns.forEach((o) => {
let [fn, color] = o;
for (let x = x1; x <= x2; x += dx) {
let y = fn(x);
if (Math.abs(y) < Infinity) {
points.push([x, y, color]);
}
}
});
fns1.forEach((o) => {
let [fn, color] = o;
lines.push([x1, fn(x1), x2, fn(x2), color]);
});
fns2.forEach((o) => {
let [fn, color] = o;
for (let x = x1; x <= x2; x += dx0) {
let g = fn(x);
lines.push([x1, g(x1), x2, g(x2), color]);
}
});
let xscale = d3.scaleLinear()
.domain([x1, x2])
.range([padding, width - padding]);
let yscale = d3.scaleLinear()
.domain([y1, y2])
.range([height - padding, padding]);
let xaxis = d3.axisBottom().scale(xscale);
let yaxis = d3.axisLeft().scale(yscale);
div0.innerHTML = '';
let svg = d3.select('#graph0')
.append('svg')
.attr('width', width)
.attr('height', height);
svg.selectAll('line')
.data([[x1, 0, x2, 0], [0, y1, 0, y2]].concat(lines))
.enter()
.append('line')
.attr('x1', (d) => xscale(d[0]))
.attr('y1', (d) => yscale(d[1]))
.attr('x2', (d) => xscale(d[2]))
.attr('y2', (d) => yscale(d[3]))
.attr('stroke', (d) => d[4] || 'black');
svg.selectAll('circle')
.data(points)
.enter()
.append('circle')
.attr('cx', (d) => xscale(d[0]))
.attr('cy', (d) => yscale(d[1]))
.attr('r', r)
.attr('fill', (d) => d[2] || 'green');
svg.append('g')
.attr('transform', `translate(0, ${height - padding})`)
.call(xaxis);
svg.append('g')
.attr('transform', `translate(${padding}, 0)`)
.call(yaxis);
[fns, fns1, fns2].forEach((fs) => p(fs.join('\n')));
};
inputs.forEach((input) => input.onchange = draw);
btn0.onclick = draw;
btn1.onclick = () => pre0.textContent = '';
draw();
0 コメント:
コメントを投稿