学習環境
- Surface 3 (4G LTE)、Surface 3 タイプ カバー、Surface ペン(端末)
- Windows 10 Pro (OS)
- 数式入力ソフト(TeX, MathML): MathType
- MathML対応ブラウザ: Firefox、Safari
- MathML非対応ブラウザ(Internet Explorer, Microsoft Edge, Google Chrome...)用JavaScript Library: MathJax
- 参考書籍
オイラーの贈物―人類の至宝eiπ=-1を学ぶ (吉田 武(著)、東海大学出版会)の第Ⅰ部(基礎理論(Basic Theory))、3章(微分(Differentiation))、3.8(関数のグラフを描く)、問題5.を取り組んでみる。
-
x 0 f''(x) - - - f'(x) + 0 - f(x) ↗ 1 ↘ 備考 上に凸 1 上に凸
x -√6 -√2 0 √2 √6 f''(x) - 0 + + + 0 - - - 0 + f'(x) + + + 0 - - - 0 + + + f(x) ↗ ↗ ↗ ↘ ↘ ↘ ↗ ↗ ↗ 備考 上に凸 変曲点 下に凸 下に凸 下に凸 変曲点 上に凸 上に凸 上に凸 変曲点 下に凸
コード(Emacs)
Python 3
#!/usr/bin/env python3 # -*- coding: utf-8 -*- from sympy import pprint, symbols, Derivative, factorial, plot, solve print('5.') x = symbols('x') fs = [1 - 1 / factorial(2) * x ** 2, 1 - 1 / factorial(2) * x ** 2 + 1 / factorial(4) * x ** 4] for i, f in enumerate(fs, 1): print(f'[{i}]') pprint(f) for n in range(1, 3): d = Derivative(f, x, n) pprint(d) fn = d.doit() pprint(fn) pprint(solve(fn)) try: p = plot(f, show=False, legend=True) p.save(f'sample5_{i}.svg') except Exception as err: print(type(err), err) print()
入出力結果(Terminal, IPython)
$ ./sample5.py 5. [1] 2 x - ── + 1 2 ⎛ 2 ⎞ d ⎜ x ⎟ ──⎜- ── + 1⎟ dx⎝ 2 ⎠ -x [0] 2⎛ 2 ⎞ d ⎜ x ⎟ ───⎜- ── + 1⎟ 2⎝ 2 ⎠ dx -1 [] [2] 4 2 x x ── - ── + 1 24 2 ⎛ 4 2 ⎞ d ⎜x x ⎟ ──⎜── - ── + 1⎟ dx⎝24 2 ⎠ 3 x ── - x 6 [0, -√6, √6] 2⎛ 4 2 ⎞ d ⎜x x ⎟ ───⎜── - ── + 1⎟ 2⎝24 2 ⎠ dx 2 x ── - 1 2 [-√2, √2] $
HTML5
<div id="graph0"></div> <pre id="output0"></pre> <label for="r0">r = </label> <input id="r0" type="number" min="0" value="0.5"> <label for="dx">dx = </label> <input id="dx" type="number" min="0" step="0.0001" value="0.001"> <br> <label for="x1">x1 = </label> <input id="x1" type="number" value="-5"> <label for="x2">x2 = </label> <input id="x2" type="number" value="5"> <br> <label for="y1">y1 = </label> <input id="y1" type="number" value="-5"> <label for="y2">y2 = </label> <input id="y2" type="number" value="5"> <br> <label for="dx0">dx0 = </label> <input id="dx0" type="number" min="0" value="0.1"> <button id="draw0">draw</button> <button id="clear0">clear</button> <script type="text/javascript" src="https://cdnjs.cloudflare.com/ajax/libs/d3/4.2.6/d3.min.js" integrity="sha256-5idA201uSwHAROtCops7codXJ0vja+6wbBrZdQ6ETQc=" crossorigin="anonymous"></script> <script src="sample5.js"></script>
JavaScript
let div0 = document.querySelector('#graph0'), pre0 = document.querySelector('#output0'), width = 600, height = 600, padding = 50, btn0 = document.querySelector('#draw0'), btn1 = document.querySelector('#clear0'), input_r = document.querySelector('#r0'), input_dx = document.querySelector('#dx'), input_x1 = document.querySelector('#x1'), input_x2 = document.querySelector('#x2'), input_y1 = document.querySelector('#y1'), input_y2 = document.querySelector('#y2'), input_dx0 = document.querySelector('#dx0'), inputs = [input_r, input_dx, input_x1, input_x2, input_y1, input_y2, input_dx0], p = (x) => pre0.textContent += x + '\n', range = (start, end, step=1) => { let res = []; for (let i = start; i < end; i += step) { res.push(i); } return res; }; let factorial = (n) => range(1, n + 1).reduce((prev, next) => prev * next, 1), g = (x) => 1 - 1 / factorial(2) * x ** 2 + 1 / factorial(4) * x ** 4, g1 = (x) => -x + 1 / 6 * x ** 3, h = (x0) => (x) => g1(x0) * (x - x0) + g(x0), g2 = (x) => -1 + 1 / 2 * x ** 2; let draw = () => { pre0.textContent = ''; let r = parseFloat(input_r.value), dx = parseFloat(input_dx.value), x1 = parseFloat(input_x1.value), x2 = parseFloat(input_x2.value), y1 = parseFloat(input_y1.value), y2 = parseFloat(input_y2.value), dx0 = parseFloat(input_dx0.value); if (r === 0 || dx === 0 || x1 > x2 || y1 > y2) { return; } let points = [], lines = [], fns = [[g, 'green'], [g1, 'blue'], [g2, 'brown']], fns1 = [], fns2 = [[h, 'orange']]; fns .forEach((o) => { let [f, color] = o; for (let x = x1; x <= x2; x += dx) { let y = f(x); if (Math.abs(y) < Infinity) { points.push([x, y, color]); } } }); fns2 .forEach((o) => { let [f, color] = o; for (let x = x1; x <= x2; x += dx0) { let g = f(x); lines.push([x1, g(x1), x2, g(x2), color]); } }); let xscale = d3.scaleLinear() .domain([x1, x2]) .range([padding, width - padding]); let yscale = d3.scaleLinear() .domain([y1, y2]) .range([height - padding, padding]); let xaxis = d3.axisBottom().scale(xscale); let yaxis = d3.axisLeft().scale(yscale); div0.innerHTML = ''; let svg = d3.select('#graph0') .append('svg') .attr('width', width) .attr('height', height); svg.selectAll('line') .data([[x1, 0, x2, 0], [0, y1, 0, y2]].concat(lines)) .enter() .append('line') .attr('x1', (d) => xscale(d[0])) .attr('y1', (d) => yscale(d[1])) .attr('x2', (d) => xscale(d[2])) .attr('y2', (d) => yscale(d[3])) .attr('stroke', (d) => d[4] || 'black'); svg.selectAll('circle') .data(points) .enter() .append('circle') .attr('cx', (d) => xscale(d[0])) .attr('cy', (d) => yscale(d[1])) .attr('r', r) .attr('fill', (d) => d[2] || 'green'); svg.append('g') .attr('transform', `translate(0, ${height - padding})`) .call(xaxis); svg.append('g') .attr('transform', `translate(${padding}, 0)`) .call(yaxis); [fns, fns1, fns2].forEach((fs) => p(fs.join('\n'))); }; inputs.forEach((input) => input.onchange = draw); btn0.onclick = draw; btn1.onclick = () => pre0.textContent = ''; draw();
0 コメント:
コメントを投稿