## 2018年12月22日土曜日

### Algorithm - Python - 数独は二度とごめんだ(制約、偶数を置くマスを指定、最適化ソルバー、推論、大域変数、集合と集合演算、しらみつぶし再帰探索)

コード(Emacs)

Python 3

```#!/usr/bin/env python3

def find_next_cell_to_fill(grid: list) -> (int, int):
for x in range(9):
for y in range(9):
if grid[x][y] == 0 or grid[x][y] == -2:
return x, y
return -1, -1

def is_valid(grid: list, i: int, j: int, e: int) -> bool:
if grid[i][j] == -2 and e % 2 != 0:
return False
if all([e != grid[i][y] for y in range(9)]) and \
all([e != grid[x][j] for x in range(9)]):
top_x = 3 * (i // 3)
top_y = 3 * (j // 3)
for x in range(top_x, top_x + 3):
for y in range(top_y, top_y + 3):
if grid[x][y] == e:
return False
return True
return False

def make_implications(grid: list, i: int, j: int, e: int) -> list:
sectors = [[0, 3, 0, 3], [3, 6, 0, 3], [6, 9, 0, 3],
[0, 3, 3, 6], [3, 6, 3, 6], [6, 9, 3, 6],
[0, 3, 6, 9], [3, 6, 6, 9], [6, 9, 6, 9]]
implications = [(i, j, e, grid[i][j])]
grid[i][j] = e
implications_len = len(implications)
while True:
for x1, x2, y1, y2 in sectors:
val_set = set(range(1, 10))
for x in range(x1, x2):
for y in range(y1, y2):
if grid[x][y] != 0 and grid[x][y] != -2:
val_set.remove(grid[x][y])
sector_infos = [[x, y, val_set.copy()]
for x in range(x1, x2)
for y in range(y1, y2)
if grid[x][y] == 0 or grid[x][y] == -2]
for x0, y0, val_set0 in sector_infos:
row_val = {grid[x0][y] for y in range(9)}
left = val_set0 - row_val
col_val = {grid[x][y0] for x in range(9)}
left -= col_val
if len(left) == 1:
val = left.pop()
if is_valid(grid, x0, y0, val):
val_before = grid[x0][y0]
grid[x0][y0] = val
implications.append((x0, y0, val, val_before))
if len(implications) == implications_len:
break
implications_len = len(implications)
return implications

def undo_implications(grid: int, implications: list) -> None:
for x, y, _, val in implications:
grid[x][y] = val

backtracks = 0

def solve_sudoku(grid: list, i: int = 0, j: int = 0) -> bool:
global backtracks
i, j = find_next_cell_to_fill(grid)
if i == -1:
return True
for e in range(1, 10):
if is_valid(grid, i, j, e):
implications = make_implications(grid, i, j, e)
if solve_sudoku(grid, i, j):
return True
backtracks += 1
undo_implications(grid, implications)
return False

def print_sudoku(grid: list) -> None:
print('-' * 29)
for i, row in enumerate(grid):
if i % 3 == 0 and i != 0:
print(' ')
print(f'{row[0:3]} {row[3:6]} {row[6:9]}')
print('-' * 29)

if __name__ == '__main__':
inputs = [[[5, 1, 7, 6, 0, 0, 0, 3, 4],
[0, 8, 9, 0, 0, 4, 0, 0, 0],
[3, 0, 6, 2, 0, 5, 0, 9, 0],
[6, 0, 0, 0, 0, 0, 0, 1, 0],
[0, 3, 0, 0, 0, 6, 0, 4, 7],
[0, 0, 0, 0, 0, 0, 0, 0, 0],
[0, 9, 0, 0, 0, 0, 0, 7, 8],
[7, 0, 3, 4, 0, 0, 5, 6, 0],
[0, 0, 0, 0, 0, 0, 0, 0, 0]],
[[8, 4, 0, 0, 5, 0, -2, 0, 0],
[3, 0, 0, 6, 0, 8, 0, 4, 0],
[0, 0, -2, 4, 0, 9, 0, 0, -2],
[0, 2, 3, 0, -2, 0, 9, 8, 0],
[1, 0, 0, -2, 0, -2, 0, 0, 4],
[0, 9, 8, 0, -2, 0, 1, 6, 0],
[-2, 0, 0, 5, 0, 3, -2, 0, 0],
[0, 3, 0, 1, 0, 6, 0, 0, 7],
[0, 0, -2, 0, 2, 0, 0, 1, 3]],
[[0 for _ in range(9)]
for _ in range(9)],
[[-2 for _ in range(9)]
for _ in range(9)]]
for input0 in inputs:
backtracks = 0
print_sudoku(input0)
if solve_sudoku(input0):
print_sudoku(input0)
else:
print('no solution')
print(f'backtracks: {backtracks}')
```

```\$ ./sample3.py
-----------------------------
[5, 1, 7] [6, 0, 0] [0, 3, 4]
[0, 8, 9] [0, 0, 4] [0, 0, 0]
[3, 0, 6] [2, 0, 5] [0, 9, 0]

[6, 0, 0] [0, 0, 0] [0, 1, 0]
[0, 3, 0] [0, 0, 6] [0, 4, 7]
[0, 0, 0] [0, 0, 0] [0, 0, 0]

[0, 9, 0] [0, 0, 0] [0, 7, 8]
[7, 0, 3] [4, 0, 0] [5, 6, 0]
[0, 0, 0] [0, 0, 0] [0, 0, 0]
-----------------------------
-----------------------------
[5, 1, 7] [6, 9, 8] [2, 3, 4]
[2, 8, 9] [1, 3, 4] [7, 5, 6]
[3, 4, 6] [2, 7, 5] [8, 9, 1]

[6, 7, 2] [8, 4, 9] [3, 1, 5]
[1, 3, 8] [5, 2, 6] [9, 4, 7]
[9, 5, 4] [7, 1, 3] [6, 8, 2]

[4, 9, 5] [3, 6, 2] [1, 7, 8]
[7, 2, 3] [4, 8, 1] [5, 6, 9]
[8, 6, 1] [9, 5, 7] [4, 2, 3]
-----------------------------
backtracks: 2
-----------------------------
[8, 4, 0] [0, 5, 0] [-2, 0, 0]
[3, 0, 0] [6, 0, 8] [0, 4, 0]
[0, 0, -2] [4, 0, 9] [0, 0, -2]

[0, 2, 3] [0, -2, 0] [9, 8, 0]
[1, 0, 0] [-2, 0, -2] [0, 0, 4]
[0, 9, 8] [0, -2, 0] [1, 6, 0]

[-2, 0, 0] [5, 0, 3] [-2, 0, 0]
[0, 3, 0] [1, 0, 6] [0, 0, 7]
[0, 0, -2] [0, 2, 0] [0, 1, 3]
-----------------------------
-----------------------------
[8, 4, 9] [2, 5, 7] [6, 3, 1]
[3, 5, 7] [6, 1, 8] [2, 4, 9]
[6, 1, 2] [4, 3, 9] [7, 5, 8]

[4, 2, 3] [7, 6, 1] [9, 8, 5]
[1, 6, 5] [8, 9, 2] [3, 7, 4]
[7, 9, 8] [3, 4, 5] [1, 6, 2]

[2, 8, 1] [5, 7, 3] [4, 9, 6]
[9, 3, 4] [1, 8, 6] [5, 2, 7]
[5, 7, 6] [9, 2, 4] [8, 1, 3]
-----------------------------
backtracks: 25
-----------------------------
[0, 0, 0] [0, 0, 0] [0, 0, 0]
[0, 0, 0] [0, 0, 0] [0, 0, 0]
[0, 0, 0] [0, 0, 0] [0, 0, 0]

[0, 0, 0] [0, 0, 0] [0, 0, 0]
[0, 0, 0] [0, 0, 0] [0, 0, 0]
[0, 0, 0] [0, 0, 0] [0, 0, 0]

[0, 0, 0] [0, 0, 0] [0, 0, 0]
[0, 0, 0] [0, 0, 0] [0, 0, 0]
[0, 0, 0] [0, 0, 0] [0, 0, 0]
-----------------------------
-----------------------------
[1, 2, 3] [4, 5, 6] [7, 8, 9]
[4, 5, 6] [7, 8, 9] [1, 2, 3]
[7, 8, 9] [1, 2, 3] [4, 5, 6]

[2, 1, 4] [3, 6, 5] [8, 9, 7]
[3, 6, 5] [8, 9, 7] [2, 1, 4]
[8, 9, 7] [2, 1, 4] [3, 6, 5]

[5, 3, 1] [6, 4, 2] [9, 7, 8]
[6, 4, 2] [9, 7, 8] [5, 3, 1]
[9, 7, 8] [5, 3, 1] [6, 4, 2]
-----------------------------
backtracks: 151
-----------------------------
[-2, -2, -2] [-2, -2, -2] [-2, -2, -2]
[-2, -2, -2] [-2, -2, -2] [-2, -2, -2]
[-2, -2, -2] [-2, -2, -2] [-2, -2, -2]

[-2, -2, -2] [-2, -2, -2] [-2, -2, -2]
[-2, -2, -2] [-2, -2, -2] [-2, -2, -2]
[-2, -2, -2] [-2, -2, -2] [-2, -2, -2]

[-2, -2, -2] [-2, -2, -2] [-2, -2, -2]
[-2, -2, -2] [-2, -2, -2] [-2, -2, -2]
[-2, -2, -2] [-2, -2, -2] [-2, -2, -2]
-----------------------------
no solution
backtracks: 64
\$
```