2018年1月12日金曜日

学習環境

解析入門〈3〉(松坂 和夫(著)、岩波書店)の第14章(多変数の関数)、14.1(微分可能性と勾配ベクトル)、問題5.を取り組んでみる。


  1. x i f + g = f x i + g x i g r a d f + g = g r a d f + g r a dg
    x i c f = c f x i g r a d c f = cg r a d f
    x i f g = f x i g + f · g x i g r a d f g = g g r a d f + f g r a dg = f g r a dg + g g r a d f
    x i 1 f = - 1 f 2 · f x i g r a d 1 f = - 1 f 2 g r a d f

コード(Emacs)

Python 3

#!/usr/bin/env python3
from sympy import pprint, symbols, sqrt, log, exp, Derivative, Function, Matrix

n = 2
xs = symbols([f'x{i}' for i in range(1, n + 1)])
f = Function('f')(sum([x for x in xs]))
g = Function('g')(sum([2 * x for x in xs]))
c = symbols('c')
grad1 = [Derivative(f + g, x, 1) for x in xs]
grad2 = [Derivative(c * f, x, 1) for x in xs]
grad3 = [Derivative(f * g, x, 1) for x in xs]
grad4 = [Derivative(1 / f, x, 1) for x in xs]

for grad in [grad1, grad2, grad3, grad3]:
    for t in [grad, [h.doit() for h in grad]]:
        pprint(t)
        print()
    print()

入出力結果(Terminal, Jupyter(IPython))

$ ./sample5.py
⎡ ∂                                 ∂                              ⎤
⎢───(f(x₁ + x₂) + g(2⋅x₁ + 2⋅x₂)), ───(f(x₁ + x₂) + g(2⋅x₁ + 2⋅x₂))⎥
⎣∂x₁                               ∂x₂                             ⎦

⎡⎛ d        ⎞│               ⎛ d        ⎞│                ⎛ d        ⎞│       
⎢⎜───(f(ξ₁))⎟│           + 2⋅⎜───(g(ξ₁))⎟│              , ⎜───(f(ξ₁))⎟│       
⎣⎝dξ₁       ⎠│ξ₁=x₁ + x₂     ⎝dξ₁       ⎠│ξ₁=2⋅x₁ + 2⋅x₂  ⎝dξ₁       ⎠│ξ₁=x₁ +

        ⎛ d        ⎞│              ⎤
    + 2⋅⎜───(g(ξ₁))⎟│              ⎥
 x₂     ⎝dξ₁       ⎠│ξ₁=2⋅x₁ + 2⋅x₂⎦


⎡ ∂                  ∂               ⎤
⎢───(c⋅f(x₁ + x₂)), ───(c⋅f(x₁ + x₂))⎥
⎣∂x₁                ∂x₂              ⎦

⎡  ⎛ d        ⎞│              ⎛ d        ⎞│          ⎤
⎢c⋅⎜───(f(ξ₁))⎟│          , c⋅⎜───(f(ξ₁))⎟│          ⎥
⎣  ⎝dξ₁       ⎠│ξ₁=x₁ + x₂    ⎝dξ₁       ⎠│ξ₁=x₁ + x₂⎦


⎡ ∂                               ∂                            ⎤
⎢───(f(x₁ + x₂)⋅g(2⋅x₁ + 2⋅x₂)), ───(f(x₁ + x₂)⋅g(2⋅x₁ + 2⋅x₂))⎥
⎣∂x₁                             ∂x₂                           ⎦

⎡             ⎛ d        ⎞│                                ⎛ d        ⎞│      
⎢2⋅f(x₁ + x₂)⋅⎜───(g(ξ₁))⎟│               + g(2⋅x₁ + 2⋅x₂)⋅⎜───(f(ξ₁))⎟│      
⎣             ⎝dξ₁       ⎠│ξ₁=2⋅x₁ + 2⋅x₂                  ⎝dξ₁       ⎠│ξ₁=x₁ 

                   ⎛ d        ⎞│                                ⎛ d        ⎞│ 
    , 2⋅f(x₁ + x₂)⋅⎜───(g(ξ₁))⎟│               + g(2⋅x₁ + 2⋅x₂)⋅⎜───(f(ξ₁))⎟│ 
+ x₂               ⎝dξ₁       ⎠│ξ₁=2⋅x₁ + 2⋅x₂                  ⎝dξ₁       ⎠│ξ

         ⎤
         ⎥
₁=x₁ + x₂⎦


⎡ ∂                               ∂                            ⎤
⎢───(f(x₁ + x₂)⋅g(2⋅x₁ + 2⋅x₂)), ───(f(x₁ + x₂)⋅g(2⋅x₁ + 2⋅x₂))⎥
⎣∂x₁                             ∂x₂                           ⎦

⎡             ⎛ d        ⎞│                                ⎛ d        ⎞│      
⎢2⋅f(x₁ + x₂)⋅⎜───(g(ξ₁))⎟│               + g(2⋅x₁ + 2⋅x₂)⋅⎜───(f(ξ₁))⎟│      
⎣             ⎝dξ₁       ⎠│ξ₁=2⋅x₁ + 2⋅x₂                  ⎝dξ₁       ⎠│ξ₁=x₁ 

                   ⎛ d        ⎞│                                ⎛ d        ⎞│ 
    , 2⋅f(x₁ + x₂)⋅⎜───(g(ξ₁))⎟│               + g(2⋅x₁ + 2⋅x₂)⋅⎜───(f(ξ₁))⎟│ 
+ x₂               ⎝dξ₁       ⎠│ξ₁=2⋅x₁ + 2⋅x₂                  ⎝dξ₁       ⎠│ξ

         ⎤
         ⎥
₁=x₁ + x₂⎦


$

HTML5

<div id="graph0"></div>
<pre id="output0"></pre>
<label for="r0">r = </label>
<input id="r0" type="number" min="0" value="0.5">
<label for="dx">dx = </label>
<input id="dx" type="number" min="0" step="0.0001" value="0.001">
<br>
<label for="x1">x1 = </label>
<input id="x1" type="number" value="-5">
<label for="x2">x2 = </label>
<input id="x2" type="number" value="5">
<br>
<label for="y1">y1 = </label>
<input id="y1" type="number" value="-5">
<label for="y2">y2 = </label>
<input id="y2" type="number" value="5">
<br>

<label for="k0">k0 = </label>
<input id="k0" type="number" min="0" step="1" value="1">

<button id="draw0">draw</button>
<button id="clear0">clear</button>

<script type="text/javascript" src="https://cdnjs.cloudflare.com/ajax/libs/d3/4.2.6/d3.min.js" integrity="sha256-5idA201uSwHAROtCops7codXJ0vja+6wbBrZdQ6ETQc=" crossorigin="anonymous"></script>

<script src="sample5.js"></script>    

JavaScript

let div0 = document.querySelector('#graph0'),
    pre0 = document.querySelector('#output0'),
    width = 600,
    height = 600,
    padding = 50,
    btn0 = document.querySelector('#draw0'),
    btn1 = document.querySelector('#clear0'),
    input_r = document.querySelector('#r0'),
    input_dx = document.querySelector('#dx'),
    input_x1 = document.querySelector('#x1'),
    input_x2 = document.querySelector('#x2'),
    input_y1 = document.querySelector('#y1'),
    input_y2 = document.querySelector('#y2'),
    input_k0 = document.querySelector('#k0'),
    inputs = [input_r, input_dx, input_x1, input_x2, input_y1, input_y2,
              input_k0],
    p = (x) => pre0.textContent += x + '\n',
    range = (start, end, step=1) => {
        let res = [];
        for (let i = start; i < end; i += step) {
            res.push(i);
        }
        return res;
    };

let c = 5,
    f = (x) => x,
    g = (x) => 2 * x,
    h1 = (x) => f(x) + g(x),
    h2 = (x) => c * f(x),
    h3 = (x) => f(x) * g(x),
    h4 = (x) => 1 / f(x);

let draw = () => {
    pre0.textContent = '';


    let r = parseFloat(input_r.value),
        dx = parseFloat(input_dx.value),
        x1 = parseFloat(input_x1.value),
        x2 = parseFloat(input_x2.value),
        y1 = parseFloat(input_y1.value),
        y2 = parseFloat(input_y2.value);
    
    if (r === 0 || dx === 0 || x1 > x2 || y1 > y2) {
        return;
    }

    let points = [],
        lines = [],
        fns = [[f, 'red'],
               [g, 'green'],
               [h1, 'blue'],
               [h2, 'brown'],
               [h3, 'orange'],
               [h4, 'purple']];

    fns
        .forEach((o) => {
            let [fn, color] = o;
            
            for (let x = x1; x <= x2; x += dx) {
                let y = fn(x);
                
                if (Math.abs(y) < Infinity) {
                    points.push([x, y, color]);
                }
            }
        });
    
    let xscale = d3.scaleLinear()
        .domain([x1, x2])
        .range([padding, width - padding]);

    let yscale = d3.scaleLinear()
        .domain([y1, y2])
        .range([height - padding, padding]);

    let xaxis = d3.axisBottom().scale(xscale);
    let yaxis = d3.axisLeft().scale(yscale);
    div0.innerHTML = '';
    let svg = d3.select('#graph0')
        .append('svg')
        .attr('width', width)
        .attr('height', height);

    svg.selectAll('circle')
        .data(points)
        .enter()
        .append('circle')
        .attr('cx', (d) => xscale(d[0]))
        .attr('cy', (d) => yscale(d[1]))
        .attr('r', r)
        .attr('fill', (d) => d[2] || 'green');

    svg.selectAll('line')
        .data([[x1, 0, x2, 0], [0, y1, 0, y2]].concat(lines))
        .enter()
        .append('line')
        .attr('x1', (d) => xscale(d[0]))
        .attr('y1', (d) => yscale(d[1]))
        .attr('x2', (d) => xscale(d[2]))
        .attr('y2', (d) => yscale(d[3]))
        .attr('stroke', (d) => d[4] || 'black');
    
    svg.append('g')
        .attr('transform', `translate(0, ${height - padding})`)
        .call(xaxis);

    svg.append('g')
        .attr('transform', `translate(${padding}, 0)`)
        .call(yaxis);
    p(fns.join('\n'));
};

inputs.forEach((input) => input.onchange = draw);
btn0.onclick = draw;
btn1.onclick = () => pre0.textContent = '';
draw();








0 コメント:

コメントを投稿