学習環境
- Surface 3 (4G LTE)、Surface 3 タイプ カバー、Surface ペン(端末)
- Windows 10 Pro (OS)
- Nebo(Windows アプリ)
- iPad Pro + Apple Pencil
- MyScript Nebo(iPad アプリ)
- 参考書籍
線型代数入門(松坂 和夫(著)、岩波書店)の第4章(複素数、複素ベクトル空間)、5(複素数と平面幾何学)、問題1.を取り組んでみる。
正三角形の各2つの辺のなす角を考えれば、必要十分条件は
コード(Emacs)
Python 3
#!/usr/bin/env python3
from sympy import pprint, symbols, I
a, b, c = symbols('a, b, c', imag=True)
eq = (c - a) / (b - a) - (a - b) / (c - b)
for t in [eq, eq.expand(), eq.factor()]:
pprint(t)
print()
a1, b1, a2, b2, a3, b3 = symbols('a1, b1, a2, b2, a3, b3', real=True)
a = a1 + b1 * I
b = a2 + b2 * I
c = a3 + b3 * I
eq = a ** 2 + b ** 2 + c ** 2 - b * c - c * a - a * b
for t in [eq, eq.expand(), eq.factor()]:
pprint(t)
print()
入出力結果(Terminal, Jupyter(IPython))
$ ./sample1.py
a - b -a + c
- ────── + ──────
-b + c -a + b
a a b c
- ────── - ────── + ────── + ──────
-b + c -a + b -b + c -a + b
2 2 2
a - a⋅b - a⋅c + b - b⋅c + c
──────────────────────────────
(a - b)⋅(b - c)
2
(a₁ + ⅈ⋅b₁) - (a₁ + ⅈ⋅b₁)⋅(a₂ + ⅈ⋅b₂) - (a₁ + ⅈ⋅b₁)⋅(a₃ + ⅈ⋅b₃) + (a₂ + ⅈ⋅b₂)
2 2
- (a₂ + ⅈ⋅b₂)⋅(a₃ + ⅈ⋅b₃) + (a₃ + ⅈ⋅b₃)
2 2
a₁ - a₁⋅a₂ - a₁⋅a₃ + 2⋅ⅈ⋅a₁⋅b₁ - ⅈ⋅a₁⋅b₂ - ⅈ⋅a₁⋅b₃ + a₂ - a₂⋅a₃ - ⅈ⋅a₂⋅b₁ +
2 2
2⋅ⅈ⋅a₂⋅b₂ - ⅈ⋅a₂⋅b₃ + a₃ - ⅈ⋅a₃⋅b₁ - ⅈ⋅a₃⋅b₂ + 2⋅ⅈ⋅a₃⋅b₃ - b₁ + b₁⋅b₂ + b₁⋅b
2 2
₃ - b₂ + b₂⋅b₃ - b₃
2 2
a₁ - a₁⋅a₂ - a₁⋅a₃ + 2⋅ⅈ⋅a₁⋅b₁ - ⅈ⋅a₁⋅b₂ - ⅈ⋅a₁⋅b₃ + a₂ - a₂⋅a₃ - ⅈ⋅a₂⋅b₁ +
2 2
2⋅ⅈ⋅a₂⋅b₂ - ⅈ⋅a₂⋅b₃ + a₃ - ⅈ⋅a₃⋅b₁ - ⅈ⋅a₃⋅b₂ + 2⋅ⅈ⋅a₃⋅b₃ - b₁ + b₁⋅b₂ + b₁⋅b
2 2
₃ - b₂ + b₂⋅b₃ - b₃
$
HTML5
<div id="graph0"></div> <pre id="output0"></pre> <label for="r0">r = </label> <input id="r0" type="number" min="0" value="0.5"> <label for="dx">dx = </label> <input id="dx" type="number" min="0" step="0.0001" value="0.001"> <br> <label for="x1">x1 = </label> <input id="x1" type="number" value="-10"> <label for="x2">x2 = </label> <input id="x2" type="number" value="10"> <br> <label for="y1">y1 = </label> <input id="y1" type="number" value="-10"> <label for="y2">y2 = </label> <input id="y2" type="number" value="10"> <br> <input id="a1" type="number" step="0.01" value="0"> + <input id="b1" type="number" step="0.01" value="0">i <br> <input id="a2" type="number" step="0.01" value="5"> + <input id="b2" type="number" step="0.01" value="0">i <br> <input id="a3" type="number" step="0.01" value="2.5"> + <input id="b3" type="number" step="0.01" value="4.3301">i <button id="draw0">draw</button> <button id="clear0">clear</button> <script type="text/javascript" src="https://cdnjs.cloudflare.com/ajax/libs/d3/4.2.6/d3.min.js" integrity="sha256-5idA201uSwHAROtCops7codXJ0vja+6wbBrZdQ6ETQc=" crossorigin="anonymous"></script> <script src="sample1.js"></script>
JavaScript
let div0 = document.querySelector('#graph0'),
pre0 = document.querySelector('#output0'),
width = 600,
height = 600,
padding = 50,
btn0 = document.querySelector('#draw0'),
btn1 = document.querySelector('#clear0'),
input_r = document.querySelector('#r0'),
input_dx = document.querySelector('#dx'),
input_x1 = document.querySelector('#x1'),
input_x2 = document.querySelector('#x2'),
input_y1 = document.querySelector('#y1'),
input_y2 = document.querySelector('#y2'),
input_a1 = document.querySelector('#a1'),
input_b1 = document.querySelector('#b1'),
input_a2 = document.querySelector('#a2'),
input_b2 = document.querySelector('#b2'),
input_a3 = document.querySelector('#a3'),
input_b3 = document.querySelector('#b3'),
inputs = [input_r, input_dx, input_x1, input_x2, input_y1, input_y2,
input_a1, input_b1,input_a2, input_b2,input_a3, input_b3],
p = (x) => pre0.textContent += x + '\n',
range = (start, end, step=1) => {
let res = [];
for (let i = start; i < end; i += step) {
res.push(i);
}
return res;
};
let f = (x) => Math.sqrt(1 - x ** 2),
g = (x) => -f(x);
let draw = () => {
pre0.textContent = '';
let r = parseFloat(input_r.value),
dx = parseFloat(input_dx.value),
x1 = parseFloat(input_x1.value),
x2 = parseFloat(input_x2.value),
y1 = parseFloat(input_y1.value),
y2 = parseFloat(input_y2.value),
a1 = parseFloat(input_a1.value),
b1 = parseFloat(input_b1.value),
a2 = parseFloat(input_a2.value),
b2 = parseFloat(input_b2.value),
a3 = parseFloat(input_a3.value),
b3 = parseFloat(input_b3.value),
real = a1 ** 2 - a1 * a2 - a1 * a3 + a2 ** 2 - a2 * a3 + a3 ** 2 - b1 ** 2 + b1 * b2 + b1 * b3 - b2 ** 2 + b2 * b3 - b3 ** 2,
imag = 2 * a1 * b1 - a1 * b2 - a1 * b3 - a2 * b1 + 2 * a2 * b2 - a2 * b3 - a3 * b1 - a3 * b2 + 2 * a3 * b3;
if (r === 0 || dx === 0 || x1 > x2 || y1 > y2) {
return;
}
let points = [],
lines = [[a1, b1, a2, b2, 'red'],
[a2, b2, a3, b3, 'green'],
[a3, b3, a1, b1, 'blue']],
fns = [],
fns1 = [],
fns2 = [];
fns
.forEach((o) => {
let [f, color] = o;
for (let x = x1; x <= x2; x += dx) {
let y = f(x);
points.push([x, y, color]);
}
});
fns2
.forEach((o) => {
let [f, color] = o;
for (let x = x1; x <= x2; x += dx0) {
let g = f(x);
lines.push([x1, g(x1), x2, g(x2), color]);
}
});
let xscale = d3.scaleLinear()
.domain([x1, x2])
.range([padding, width - padding]);
let yscale = d3.scaleLinear()
.domain([y1, y2])
.range([height - padding, padding]);
let xaxis = d3.axisBottom().scale(xscale);
let yaxis = d3.axisLeft().scale(yscale);
div0.innerHTML = '';
let svg = d3.select('#graph0')
.append('svg')
.attr('width', width)
.attr('height', height);
svg.selectAll('line')
.data([[x1, 0, x2, 0], [0, y1, 0, y2]].concat(lines))
.enter()
.append('line')
.attr('x1', (d) => xscale(d[0]))
.attr('y1', (d) => yscale(d[1]))
.attr('x2', (d) => xscale(d[2]))
.attr('y2', (d) => yscale(d[3]))
.attr('stroke', (d) => d[4] || 'black');
svg.selectAll('circle')
.data(points)
.enter()
.append('circle')
.attr('cx', (d) => xscale(d[0]))
.attr('cy', (d) => yscale(d[1]))
.attr('r', r)
.attr('fill', (d) => d[2] || 'green');
svg.append('g')
.attr('transform', `translate(0, ${height - padding})`)
.call(xaxis);
svg.append('g')
.attr('transform', `translate(${padding}, 0)`)
.call(yaxis);
[fns, fns1, fns2].forEach((fs) => p(fs.join('\n')));
p(`${real} + ${imag}i`);
};
inputs.forEach((input) => input.onchange = draw);
btn0.onclick = draw;
btn1.onclick = () => pre0.textContent = '';
draw();
+ i
+ i
+ i
0 コメント:
コメントを投稿