学習環境
- Surface 3 (4G LTE)、Surface 3 タイプ カバー、Surface ペン(端末)
- Windows 10 Pro (OS)
- Nebo(Windows アプリ)
- iPad Pro + Apple Pencil
- MyScript Nebo(iPad アプリ)
- 参考書籍
解析入門 原書第3版 (S.ラング(著)、松坂 和夫(翻訳)、片山 孝次(翻訳)、岩波書店)の第2部(微分と基本的な関数)、第8章(指数関数と対数関数)、4(大きさの程度)、練習問題19.を取り組んでみる。
x が1より大きい場合。
よって、関数 f は強増加である。
コード(Emacs)
Python 3
#!/usr/bin/env python3
from sympy import pprint, symbols, log, Limit, oo, solve
x, y = symbols('x, y', real=True)
f = x ** x
l = Limit(log(log(x)) / log(log(f)), x, oo)
g = solve(y - f, x)[0]
for t in [f, l, l.doit(), g]:
pprint(t)
print()
入出力結果(Terminal, Jupyter(IPython))
$ ./sample18.py
(a)
d
──(x⋅log(x))
dx
log(x) + 1
⎡ -1⎤
⎣ℯ ⎦
2
d
───(x⋅log(x))
2
dx
1
─
x
[]
lim (x⋅log(x))
x─→0⁺
0
lim (x⋅log(x))
x─→∞
∞
(b)
d ⎛ 2 ⎞
──⎝x ⋅log(x)⎠
dx
2⋅x⋅log(x) + x
⎡ -1/2⎤
⎣ℯ ⎦
2
d ⎛ 2 ⎞
───⎝x ⋅log(x)⎠
2
dx
2⋅log(x) + 3
⎡ -3/2⎤
⎣ℯ ⎦
⎛ 2 ⎞
lim ⎝x ⋅log(x)⎠
x─→0⁺
0
⎛ 2 ⎞
lim ⎝x ⋅log(x)⎠
x─→∞
∞
(c)
d ⎛ 2 ⎞
──⎝x⋅log (x)⎠
dx
2
log (x) + 2⋅log(x)
⎡ -2⎤
⎣1, ℯ ⎦
2
d ⎛ 2 ⎞
───⎝x⋅log (x)⎠
2
dx
2⋅(log(x) + 1)
──────────────
x
⎡ -1⎤
⎣ℯ ⎦
⎛ 2 ⎞
lim ⎝x⋅log (x)⎠
x─→0⁺
0
⎛ 2 ⎞
lim ⎝x⋅log (x)⎠
x─→∞
∞
(d)
d ⎛ x ⎞
──⎜──────⎟
dx⎝log(x)⎠
1 1
────── - ───────
log(x) 2
log (x)
[ℯ]
2
d ⎛ x ⎞
───⎜──────⎟
2⎝log(x)⎠
dx
2
-1 + ──────
log(x)
───────────
2
x⋅log (x)
⎡ 2⎤
⎣ℯ ⎦
⎛ x ⎞
lim ⎜──────⎟
x─→1⁺⎝log(x)⎠
∞
⎛ x ⎞
lim ⎜──────⎟
x─→∞⎝log(x)⎠
∞
$
HTML5
<div id="graph0"></div> <pre id="output0"></pre> <label for="r0">r = </label> <input id="r0" type="number" min="0" value="0.5"> <label for="dx">dx = </label> <input id="dx" type="number" min="0" step="0.001" value="0.001"> <br> <label for="x1">x1 = </label> <input id="x1" type="number" value="-10"> <label for="x2">x2 = </label> <input id="x2" type="number" value="10"> <br> <label for="y1">y1 = </label> <input id="y1" type="number" value="-10"> <label for="y2">y2 = </label> <input id="y2" type="number" value="10"> <button id="draw0">draw</button> <button id="clear0">clear</button> <script type="text/javascript" src="https://cdnjs.cloudflare.com/ajax/libs/d3/4.2.6/d3.min.js" integrity="sha256-5idA201uSwHAROtCops7codXJ0vja+6wbBrZdQ6ETQc=" crossorigin="anonymous"></script> <script src="sample19.js"></script>
JavaScript
let div0 = document.querySelector('#graph0'),
pre0 = document.querySelector('#output0'),
width = 600,
height = 600,
padding = 50,
btn0 = document.querySelector('#draw0'),
btn1 = document.querySelector('#clear0'),
input_r = document.querySelector('#r0'),
input_dx = document.querySelector('#dx'),
input_x1 = document.querySelector('#x1'),
input_x2 = document.querySelector('#x2'),
input_y1 = document.querySelector('#y1'),
input_y2 = document.querySelector('#y2'),
inputs = [input_r, input_dx, input_x1, input_x2, input_y1, input_y2],
p = (x) => pre0.textContent += x + '\n',
range = (start, end, step=1) => {
let res = [];
for (let i = start; i < end; i += step) {
res.push(i);
}
return res;
};
let f = (x) => x ** x,
h = (x) => Math.log(Math.log(x)) / Math.log(Math.log(f(x)));
let draw = () => {
pre0.textContent = '';
let r = parseFloat(input_r.value),
dx = parseFloat(input_dx.value),
x1 = parseFloat(input_x1.value),
x2 = parseFloat(input_x2.value),
y1 = parseFloat(input_y1.value),
y2 = parseFloat(input_y2.value);
if (r === 0 || dx === 0 || x1 > x2 || y1 > y2) {
return;
}
let points = [],
lines = [[1, y1, 1, y2, 'red']],
fns = [[f, 'green'],
[h, 'blue']],
fns1 = [[(x) => x, 'orange']],
fns2 = [];
fns
.forEach((o) => {
let [f, color] = o;
for (let x = x1; x <= x2; x += dx) {
let y = f(x);
points.push([x, y, color]);
}
});
fns1
.forEach((o) => {
let [f, color] = o;
lines.push([x1, f(x1), x2, f(x2), color]);
});
fns2
.forEach((o) => {
let [f, color] = o;
for (let x = x1; x <= x2; x += dx0) {
let g = f(x);
lines.push([x1, g(x1), x2, g(x2), color]);
}
});
let xscale = d3.scaleLinear()
.domain([x1, x2])
.range([padding, width - padding]);
let yscale = d3.scaleLinear()
.domain([y1, y2])
.range([height - padding, padding]);
let xaxis = d3.axisBottom().scale(xscale);
let yaxis = d3.axisLeft().scale(yscale);
div0.innerHTML = '';
let svg = d3.select('#graph0')
.append('svg')
.attr('width', width)
.attr('height', height);
svg.selectAll('line')
.data([[x1, 0, x2, 0], [0, y1, 0, y2]].concat(lines))
.enter()
.append('line')
.attr('x1', (d) => xscale(d[0]))
.attr('y1', (d) => yscale(d[1]))
.attr('x2', (d) => xscale(d[2]))
.attr('y2', (d) => yscale(d[3]))
.attr('stroke', (d) => d[4] || 'black');
svg.selectAll('circle')
.data(points)
.enter()
.append('circle')
.attr('cx', (d) => xscale(d[0]))
.attr('cy', (d) => yscale(d[1]))
.attr('r', r)
.attr('fill', (d) => d[2] || 'green');
svg.append('g')
.attr('transform', `translate(0, ${height - padding})`)
.call(xaxis);
svg.append('g')
.attr('transform', `translate(${padding}, 0)`)
.call(yaxis);
[fns, fns1, fns2].forEach((fs) => p(fs.join('\n')));
};
inputs.forEach((input) => input.onchange = draw);
btn0.onclick = draw;
btn1.onclick = () => pre0.textContent = '';
draw();
0 コメント:
コメントを投稿