学習環境
- Surface 3 (4G LTE)、Surface 3 タイプ カバー、Surface ペン(端末)
- Windows 10 Pro (OS)
- 数式入力ソフト(TeX, MathML): MathType
- MathML対応ブラウザ: Firefox、Safari
- MathML非対応ブラウザ(Internet Explorer, Microsoft Edge, Google Chrome...)用JavaScript Library: MathJax
- 参考書籍
数学読本〈5〉微分法の応用/積分法/積分法の応用/行列と行列式(松坂 和夫(著)、岩波書店)の第20章(面積、体積、長さ - 積分法の応用)、20.4(簡単な微分方程式)、2階微分方程式、例(数直線上を運動する点、速度に比例する抵抗、減衰振動)を取り組んでみる。
よって、関数は微分方程式を満たす。
コード(Emacs)
Python 3
#!/usr/bin/env python3
from sympy import pprint, symbols, sqrt, exp, cos, Derivative
t, n, ε, A, α, σ = symbols('t, n, ε, A, α, σ')
σ0 = sqrt(n ** 2 - ε ** 2)
x = A * exp(-ε * t) * cos(σ * t + α)
D1 = Derivative(x, t, 1)
D2 = Derivative(x, t, 2)
x1 = D1.doit()
x2 = D2.doit()
for s in [D1, x1, D2, x2]:
pprint(s.factor())
print()
eq = x2 + 2 * ε * x1 + n ** 2 * x
print(eq.subs({σ: σ0}).expand() == 0)
入出力結果(Terminal, Jupyter(IPython))
$ ./sample02.py
∂ ⎛ -t⋅ε ⎞
──⎝A⋅ℯ ⋅cos(t⋅σ + α)⎠
∂t
-t⋅ε
-A⋅(ε⋅cos(t⋅σ + α) + σ⋅sin(t⋅σ + α))⋅ℯ
2
∂ ⎛ -t⋅ε ⎞
───⎝A⋅ℯ ⋅cos(t⋅σ + α)⎠
2
∂t
⎛ 2 2 ⎞ -t⋅ε
A⋅⎝ε ⋅cos(t⋅σ + α) + 2⋅ε⋅σ⋅sin(t⋅σ + α) - σ ⋅cos(t⋅σ + α)⎠⋅ℯ
True
$
HTML5
<div id="graph0"></div> <pre id="output0"></pre> <label for="r0">r = </label> <input id="r0" type="number" min="0" value="0.5"> <label for="dx">dx = </label> <input id="dx" type="number" min="0" step="0.0001" value="0.005"> <br> <label for="x1">x1 = </label> <input id="x1" type="number" value="-10"> <label for="x2">x2 = </label> <input id="x2" type="number" value="10"> <br> <label for="y1">y1 = </label> <input id="y1" type="number" value="-10"> <label for="y2">y2 = </label> <input id="y2" type="number" value="10"> <br> <label for="n0">n = </label> <input id="n0" type="number" min="0" value="1"> <label for="ε0">ε = </label> <input id="ε0" type="number" min="0" value="0.1"> <label for="a0">A = </label> <input id="a0" type="number" value="1"> <label for="α0">α = </label> <input id="α0" type="number" value="2"> <button id="draw0">draw</button> <button id="clear0">clear</button> <script type="text/javascript" src="https://cdnjs.cloudflare.com/ajax/libs/d3/4.2.6/d3.min.js" integrity="sha256-5idA201uSwHAROtCops7codXJ0vja+6wbBrZdQ6ETQc=" crossorigin="anonymous"></script> <script src="sample02.js"></script>
JavaScript
let div0 = document.querySelector('#graph0'),
pre0 = document.querySelector('#output0'),
width = 600,
height = 600,
padding = 50,
btn0 = document.querySelector('#draw0'),
btn1 = document.querySelector('#clear0'),
input_r = document.querySelector('#r0'),
input_dx = document.querySelector('#dx'),
input_x1 = document.querySelector('#x1'),
input_x2 = document.querySelector('#x2'),
input_y1 = document.querySelector('#y1'),
input_y2 = document.querySelector('#y2'),
input_n0 = document.querySelector('#n0'),
input_ε0 = document.querySelector('#ε0'),
input_a0 = document.querySelector('#a0'),
input_α0 = document.querySelector('#α0'),
inputs = [input_r, input_dx, input_x1, input_x2, input_y1, input_y2,
input_n0, input_a0, input_α0],
p = (x) => pre0.textContent += x + '\n',
range = (start, end, step=1) => {
let res = [];
for (let i = start; i < end; i += step) {
res.push(i);
}
return res;
};
let draw = () => {
pre0.textContent = '';
let r = parseFloat(input_r.value),
dx = parseFloat(input_dx.value),
x1 = parseFloat(input_x1.value),
x2 = parseFloat(input_x2.value),
y1 = parseFloat(input_y1.value),
y2 = parseFloat(input_y2.value),
n0 = parseFloat(input_n0.value),
ε0 = parseFloat(input_ε0.value),
a0 = parseFloat(input_a0.value),
α0 = parseFloat(input_α0.value);
if (r === 0 || dx === 0 || x1 > x2 || y1 > y2) {
return;
}
let points = [],
lines = [],
σ = Math.sqrt(n0 ** 2 - ε0 ** 2),
f = (x) => a0 * Math.exp(-ε0 * x) * Math.cos(σ * x + α0),
f1 = (x) => -a0 * Math.exp(-ε0 * x) * (Math.E * Math.cos(σ * x + α0) + σ * Math.sin(σ * x + α0)),
f2 = (x) => -a0 * Math.exp(-ε0 * x) * (σ ** 2 + ε0 ** 2) * Math.cos(σ * x + α0) + n0 ** 2 + f(x),
fns = [[f, 'red'],
[f1, 'green'],
[f2, 'blue']],
fns1 = [],
fns2 = [];
fns.forEach((o) => {
let [fn, color] = o;
for (let x = x1; x <= x2; x += dx) {
let y = fn(x);
if (Math.abs(y) < Infinity) {
points.push([x, y, color]);
}
}
});
fns1.forEach((o) => {
let [fn, color] = o;
lines.push([x1, fn(x1), x2, fn(x2), color]);
});
fns2.forEach((o) => {
let [fn, color] = o;
for (let x = x1; x <= x2; x += dx0) {
let g = fn(x);
lines.push([x1, g(x1), x2, g(x2), color]);
}
});
let xscale = d3.scaleLinear()
.domain([x1, x2])
.range([padding, width - padding]);
let yscale = d3.scaleLinear()
.domain([y1, y2])
.range([height - padding, padding]);
let xaxis = d3.axisBottom().scale(xscale);
let yaxis = d3.axisLeft().scale(yscale);
div0.innerHTML = '';
let svg = d3.select('#graph0')
.append('svg')
.attr('width', width)
.attr('height', height);
svg.selectAll('line')
.data([[x1, 0, x2, 0], [0, y1, 0, y2]].concat(lines))
.enter()
.append('line')
.attr('x1', (d) => xscale(d[0]))
.attr('y1', (d) => yscale(d[1]))
.attr('x2', (d) => xscale(d[2]))
.attr('y2', (d) => yscale(d[3]))
.attr('stroke', (d) => d[4] || 'black');
svg.selectAll('circle')
.data(points)
.enter()
.append('circle')
.attr('cx', (d) => xscale(d[0]))
.attr('cy', (d) => yscale(d[1]))
.attr('r', r)
.attr('fill', (d) => d[2] || 'green');
svg.append('g')
.attr('transform', `translate(0, ${height - padding})`)
.call(xaxis);
svg.append('g')
.attr('transform', `translate(${padding}, 0)`)
.call(yaxis);
[fns, fns1, fns2].forEach((fs) => p(fs.join('\n')));
};
inputs.forEach((input) => input.onchange = draw);
btn0.onclick = draw;
btn1.onclick = () => pre0.textContent = '';
draw();
0 コメント:
コメントを投稿