学習環境
- Surface 3 (4G LTE)、Surface 3 タイプ カバー、Surface ペン(端末)
- Windows 10 Pro (OS)
- 数式入力ソフト(TeX, MathML): MathType
- MathML対応ブラウザ: Firefox、Safari
- MathML非対応ブラウザ(Internet Explorer, Microsoft Edge, Google Chrome...)用JavaScript Library: MathJax
- 参考書籍
解析入門 原書第3版 (S.ラング(著)、松坂 和夫(翻訳)、片山 孝次(翻訳)、岩波書店)の第2部(微分と基本的な関数)、第8章(指数関数と対数関数)、2(指数関数)、練習問題5.を取り組んでみる。
コード(Emacs)
Python 3
#!/usr/bin/env python3 from sympy import pprint, symbols, exp, log, sin, cos, tan, asin, acos, atan, Rational, sqrt, Derivative, plot print('5.') x = symbols('x') fs = [atan(log(x)), log(cos(3 * x + 5)), exp(sin(2 * x)), exp(acos(x)), log(exp(x)), x / exp(x), exp(exp(x)), exp(-asin(x)), tan(exp(x)), x ** sqrt(x), x ** (x ** Rational(1 / 3)), asin(exp(x) + x), exp(tan(x)), atan(exp(x))] for i, f in enumerate(fs): c = chr(ord("a") + i) print(f'({c})') try: D = Derivative(f, x, 1) f1 = D.doit() for t in [D, f1]: pprint(t) print() print() p = plot(f, f1, show=False, legend=True) for j, color in enumerate(['red', 'green']): p[j].line_color = color p.save(f'sample5_{c}.png') except Exception as err: print(type(err), err)
入出力結果(Terminal, Jupyter(IPython))
$ ./sample5.py 5. (a) d ──(atan(log(x))) dx 1 ─────────────── ⎛ 2 ⎞ x⋅⎝log (x) + 1⎠ (b) d ──(log(cos(3⋅x + 5))) dx -3⋅sin(3⋅x + 5) ──────────────── cos(3⋅x + 5) (c) d ⎛ sin(2⋅x)⎞ ──⎝ℯ ⎠ dx sin(2⋅x) 2⋅ℯ ⋅cos(2⋅x) (d) d ⎛ acos(x)⎞ ──⎝ℯ ⎠ dx acos(x) -ℯ ───────────── __________ ╱ 2 ╲╱ - x + 1 (e) d ⎛ ⎛ x⎞⎞ ──⎝log⎝ℯ ⎠⎠ dx 1 (f) d ⎛ -x⎞ ──⎝x⋅ℯ ⎠ dx -x -x - x⋅ℯ + ℯ (g) ⎛ ⎛ x⎞⎞ d ⎜ ⎝ℯ ⎠⎟ ──⎝ℯ ⎠ dx ⎛ x⎞ x ⎝ℯ ⎠ ℯ ⋅ℯ /opt/local/Library/Frameworks/Python.framework/Versions/3.6/lib/python3.6/site-packages/sympy/plotting/experimental_lambdify.py:232: UserWarning: The evaluation of the expression is problematic. We are trying a failback method that may still work. Please report this as a bug. warnings.warn('The evaluation of the expression is' /opt/local/Library/Frameworks/Python.framework/Versions/3.6/lib/python3.6/site-packages/sympy/plotting/plot.py:1109: RuntimeWarning: invalid value encountered in double_scalars cos_theta = dot_product / (vector_a_norm * vector_b_norm) /opt/local/Library/Frameworks/Python.framework/Versions/3.6/lib/python3.6/site-packages/sympy/plotting/plot.py:1105: RuntimeWarning: invalid value encountered in subtract vector_b = (z - y).astype(np.float) /opt/local/Library/Frameworks/Python.framework/Versions/3.6/lib/python3.6/site-packages/sympy/plotting/plot.py:1104: RuntimeWarning: invalid value encountered in subtract vector_a = (x - y).astype(np.float) /opt/local/Library/Frameworks/Python.framework/Versions/3.6/lib/python3.6/site-packages/sympy/plotting/plot.py:1007: RuntimeWarning: overflow encountered in double_scalars pos_bottom = ('data', 0) if yl*yh <= 0 else 'center' (h) d ⎛ -asin(x)⎞ ──⎝ℯ ⎠ dx -asin(x) -ℯ ───────────── __________ ╱ 2 ╲╱ - x + 1 (i) d ⎛ ⎛ x⎞⎞ ──⎝tan⎝ℯ ⎠⎠ dx ⎛ 2⎛ x⎞ ⎞ x ⎝tan ⎝ℯ ⎠ + 1⎠⋅ℯ (j) d ⎛ √x⎞ ──⎝x ⎠ dx √x ⎛log(x) 1 ⎞ x ⋅⎜────── + ──⎟ ⎝ 2⋅√x √x⎠ (k) ⎛ ⎛ 6004799503160661⎞⎞ ⎜ ⎜ ─────────────────⎟⎟ ⎜ ⎜ 18014398509481984⎟⎟ d ⎜ ⎝x ⎠⎟ ──⎝x ⎠ dx ⎛ 6004799503160661⎞ ⎜ ─────────────────⎟ ⎜ 18014398509481984⎟ ⎝x ⎠ ⎛ 6004799503160661⋅log(x) 1 x ⋅⎜──────────────────────────────────── + ──────────────── ⎜ 12009599006321323 120095990063213 ⎜ ───────────────── ─────────────── ⎜ 18014398509481984 180143985094819 ⎝18014398509481984⋅x x ⎞ ──⎟ 23⎟ ──⎟ 84⎟ ⎠ (l) d ⎛ ⎛ x⎞⎞ ──⎝asin⎝x + ℯ ⎠⎠ dx x ℯ + 1 ───────────────────── _________________ ╱ 2 ╱ ⎛ x⎞ ╲╱ - ⎝x + ℯ ⎠ + 1 (m) d ⎛ tan(x)⎞ ──⎝ℯ ⎠ dx ⎛ 2 ⎞ tan(x) ⎝tan (x) + 1⎠⋅ℯ (n) d ⎛ ⎛ x⎞⎞ ──⎝atan⎝ℯ ⎠⎠ dx x ℯ ──────── 2⋅x ℯ + 1 $
HTML5
<div id="graph0"></div> <pre id="output0"></pre> <label for="r0">r = </label> <input id="r0" type="number" min="0" value="0.5"> <label for="dx">dx = </label> <input id="dx" type="number" min="0" step="0.001" value="0.001"> <br> <label for="x1">x1 = </label> <input id="x1" type="number" value="-5"> <label for="x2">x2 = </label> <input id="x2" type="number" value="5"> <br> <label for="y1">y1 = </label> <input id="y1" type="number" value="-5"> <label for="y2">y2 = </label> <input id="y2" type="number" value="5"> <br> <label for="dx0">dx0 = </label> <input id="dx0" type="number" min="0" step="0.1" value="0.1"> <button id="draw0">draw</button> <button id="clear0">clear</button> <script type="text/javascript" src="https://cdnjs.cloudflare.com/ajax/libs/d3/4.2.6/d3.min.js" integrity="sha256-5idA201uSwHAROtCops7codXJ0vja+6wbBrZdQ6ETQc=" crossorigin="anonymous"></script> <script src="sample5.js"></script>
JavaScript
let div0 = document.querySelector('#graph0'), pre0 = document.querySelector('#output0'), width = 600, height = 600, padding = 50, btn0 = document.querySelector('#draw0'), btn1 = document.querySelector('#clear0'), input_r = document.querySelector('#r0'), input_dx = document.querySelector('#dx'), input_x1 = document.querySelector('#x1'), input_x2 = document.querySelector('#x2'), input_y1 = document.querySelector('#y1'), input_y2 = document.querySelector('#y2'), input_dx0 = document.querySelector('#dx0'), inputs = [input_r, input_dx, input_x1, input_x2, input_y1, input_y2, input_dx0], p = (x) => pre0.textContent += x + '\n', range = (start, end, step=1) => { let res = []; for (let i = start; i < end; i += step) { res.push(i); } return res; }; let f = (x) => Math.log(Math.cos(3 * x + 5)), f1 = (x) => -3 * Math.tan(3 * x + 5) g = (x0) => (x) => f1(x0) * (x - x0) + f(x0); let draw = () => { pre0.textContent = ''; let r = parseFloat(input_r.value), dx = parseFloat(input_dx.value), x1 = parseFloat(input_x1.value), x2 = parseFloat(input_x2.value), y1 = parseFloat(input_y1.value), y2 = parseFloat(input_y2.value), dx0 = parseFloat(input_dx0.value); if (r === 0 || dx === 0 || x1 > x2 || y1 > y2) { return; } let points = [], lines = [], fns = [[f, 'red']], fns1 = [], fns2 = [[g, 'green']]; fns .forEach((o) => { let [f, color] = o; for (let x = x1; x <= x2; x += dx) { let y = f(x); points.push([x, y, color]); } }); fns1 .forEach((o) => { let [f, color] = o; lines.push([x1, f(x1), x2, f(x2), color]); }); fns2 .forEach((o) => { let [f, color] = o; for (let x = x1; x <= x2; x += dx0) { let g = f(x); lines.push([x1, g(x1), x2, g(x2), color]); } }); let xscale = d3.scaleLinear() .domain([x1, x2]) .range([padding, width - padding]); let yscale = d3.scaleLinear() .domain([y1, y2]) .range([height - padding, padding]); let xaxis = d3.axisBottom().scale(xscale); let yaxis = d3.axisLeft().scale(yscale); div0.innerHTML = ''; let svg = d3.select('#graph0') .append('svg') .attr('width', width) .attr('height', height); svg.selectAll('line') .data([[x1, 0, x2, 0], [0, y1, 0, y2]].concat(lines)) .enter() .append('line') .attr('x1', (d) => xscale(d[0])) .attr('y1', (d) => yscale(d[1])) .attr('x2', (d) => xscale(d[2])) .attr('y2', (d) => yscale(d[3])) .attr('stroke', (d) => d[4] || 'black'); svg.selectAll('circle') .data(points) .enter() .append('circle') .attr('cx', (d) => xscale(d[0])) .attr('cy', (d) => yscale(d[1])) .attr('r', r) .attr('fill', (d) => d[2] || 'green'); svg.append('g') .attr('transform', `translate(0, ${height - padding})`) .call(xaxis); svg.append('g') .attr('transform', `translate(${padding}, 0)`) .call(yaxis); [fns, fns1, fns2].forEach((fs) => p(fs.join('\n'))); }; inputs.forEach((input) => input.onchange = draw); btn0.onclick = draw; btn1.onclick = () => pre0.textContent = ''; draw();
0 コメント:
コメントを投稿