学習環境
- Surface 3 (4G LTE)、Surface 3 タイプ カバー、Surface ペン(端末)
- Windows 10 Pro (OS)
- 数式入力ソフト(TeX, MathML): MathType
- MathML対応ブラウザ: Firefox、Safari
- MathML非対応ブラウザ(Internet Explorer, Microsoft Edge, Google Chrome...)用JavaScript Library: MathJax
- 参考書籍
集合論入門(基礎数学シリーズ)(松村 英之(著)、朝倉書店)の1.(集合算)、1.8(関係、同値関係、商集合)の練習問題12.を取り組んでみる。
-
x1、x2を任意の実数とする。
kを整数とすると次のことが成り立つ。
よってfに対応するRの同値関係はの各同値類は、その元の差が整数となる。
コード(Emacs)
Python 3
#!/usr/bin/env python3 from sympy import pprint, symbols, sin, cos, pi, solve x = symbols('x', real=True) for n in range(10): k = n - 5 pprint(2 * pi * (x + k)) print(cos(2 * pi * x) == cos(2 * pi * (x + k)).expand() and sin(2 * pi * x) == sin(2 * pi * (x + k)).expand()) print()
入出力結果(Terminal, Jupyter(IPython))
$ ./sample12.py 2⋅π⋅(x - 5) True 2⋅π⋅(x - 4) True 2⋅π⋅(x - 3) True 2⋅π⋅(x - 2) True 2⋅π⋅(x - 1) True 2⋅π⋅x True 2⋅π⋅(x + 1) True 2⋅π⋅(x + 2) True 2⋅π⋅(x + 3) True 2⋅π⋅(x + 4) True $
HTML5
<div id="graph0"></div> <pre id="output0"></pre> <label for="r0">r = </label> <input id="r0" type="number" min="0" value="0.5"> <label for="dx">dx = </label> <input id="dx" type="number" min="0" step="0.0001" value="0.001"> <br> <label for="x1">x1 = </label> <input id="x1" type="number" value="-2"> <label for="x2">x2 = </label> <input id="x2" type="number" value="2"> <br> <label for="y1">y1 = </label> <input id="y1" type="number" value="-2"> <label for="y2">y2 = </label> <input id="y2" type="number" value="2"> <br> <label for="x3">x3 = </label> <input id="x3" type="number" step="0.01" value="1.2"> <label for="x4">x4 = </label> <input id="x4" type="number" step="0.01" value="2.2"> <button id="draw0">draw</button> <button id="clear0">clear</button> <script type="text/javascript" src="https://cdnjs.cloudflare.com/ajax/libs/d3/4.2.6/d3.min.js" integrity="sha256-5idA201uSwHAROtCops7codXJ0vja+6wbBrZdQ6ETQc=" crossorigin="anonymous"></script> <script src="sample12.js"></script>
JavaScript
let div0 = document.querySelector('#graph0'), pre0 = document.querySelector('#output0'), width = 600, height = 600, padding = 50, btn0 = document.querySelector('#draw0'), btn1 = document.querySelector('#clear0'), input_r = document.querySelector('#r0'), input_dx = document.querySelector('#dx'), input_x1 = document.querySelector('#x1'), input_x2 = document.querySelector('#x2'), input_y1 = document.querySelector('#y1'), input_y2 = document.querySelector('#y2'), input_x3 = document.querySelector('#x3'), input_x4 = document.querySelector('#x4'), inputs = [input_r, input_dx, input_x1, input_x2, input_y1, input_y2, input_x3, input_x4], p = (x) => pre0.textContent += x + '\n', range = (start, end, step=1) => { let res = []; for (let i = start; i < end; i += step) { res.push(i); } return res; }; let f1 = (x) => Math.sqrt(1 - (x + 1) ** 2), f2 = (x) => -Math.sqrt(1 - (x + 1) ** 2), g1 = (x) => Math.sqrt(1 - (x - 1) ** 2), g2 = (x) => -Math.sqrt(1 - (x - 1) ** 2); let draw = () => { pre0.textContent = ''; let r = parseFloat(input_r.value), dx = parseFloat(input_dx.value), x1 = parseFloat(input_x1.value), x2 = parseFloat(input_x2.value), y1 = parseFloat(input_y1.value), y2 = parseFloat(input_y2.value), x3 = parseFloat(input_x3.value), x4 = parseFloat(input_x4.value); if (r === 0 || dx === 0 || x1 > x2 || y1 > y2) { return; } let points = [], lines = [[0 - 1, 0, Math.cos(2 * Math.PI * x3) - 1, Math.sin(2 * Math.PI * x3), 'green'], [0 + 1, 0, Math.cos(2 * Math.PI * x4) + 1, Math.sin(2 * Math.PI * x4), 'brown'],], fns = [[f1, 'red'], [f2, 'red'], [g1, 'blue'], [g2, 'blue']], fns1 = [], fns2 = []; fns .forEach((o) => { let [f, color] = o; for (let x = x1; x <= x2; x += dx) { let y = f(x); points.push([x, y, color]); } }); fns2 .forEach((o) => { let [f, color] = o; for (let x = x1; x <= x2; x += dx0) { let g = f(x); lines.push([x1, g(x1), x2, g(x2), color]); } }); let xscale = d3.scaleLinear() .domain([x1, x2]) .range([padding, width - padding]); let yscale = d3.scaleLinear() .domain([y1, y2]) .range([height - padding, padding]); let xaxis = d3.axisBottom().scale(xscale); let yaxis = d3.axisLeft().scale(yscale); div0.innerHTML = ''; let svg = d3.select('#graph0') .append('svg') .attr('width', width) .attr('height', height); svg.selectAll('line') .data([[x1, 0, x2, 0], [0, y1, 0, y2]].concat(lines)) .enter() .append('line') .attr('x1', (d) => xscale(d[0])) .attr('y1', (d) => yscale(d[1])) .attr('x2', (d) => xscale(d[2])) .attr('y2', (d) => yscale(d[3])) .attr('stroke', (d) => d[4] || 'black'); svg.selectAll('circle') .data(points) .enter() .append('circle') .attr('cx', (d) => xscale(d[0])) .attr('cy', (d) => yscale(d[1])) .attr('r', r) .attr('fill', (d) => d[2] || 'green'); svg.append('g') .attr('transform', `translate(0, ${height - padding})`) .call(xaxis); svg.append('g') .attr('transform', `translate(${padding}, 0)`) .call(yaxis); [fns, fns1, fns2].forEach((fs) => p(fs.join('\n'))); p(`x3 - x4 = ${x3 - x4}`); }; inputs.forEach((input) => input.onchange = draw); btn0.onclick = draw; btn1.onclick = () => pre0.textContent = ''; draw();
0 コメント:
コメントを投稿