学習環境
- Surface 3 (4G LTE)、Surface 3 タイプ カバー、Surface ペン(端末)
- Windows 10 Pro (OS)
- 数式入力ソフト(TeX, MathML): MathType
- MathML対応ブラウザ: Firefox、Safari
- MathML非対応ブラウザ(Internet Explorer, Microsoft Edge, Google Chrome...)用JavaScript Library: MathJax
- 参考書籍
解析入門 原書第3版 (S.ラング(著)、松坂 和夫(翻訳)、片山 孝次(翻訳)、岩波書店)の第2部(微分と基本的な関数)、第7章(逆関数)、4(逆正接関数)、練習問題5、6、7、8、9、10、11、12、13、14、15、16.を取り組んでみる。
コード(Emacs)
Python 3
#!/usr/bin/env python3
# -*- coding: utf-8 -*-
from sympy import pprint, symbols, sin, cos, asin, acos, atan, Derivative, sqrt
x = symbols('x')
fs = [atan(3 * x),
atan(sqrt(x)),
asin(x) + acos(x),
x * asin(x),
asin(sin(2 * x)),
x ** 2 * atan(2 * x),
sin(x) / asin(x),
asin(cos(x) - x ** 2),
atan(1 / x),
atan(1 / 2 * x),
(1 + asin(3 * x)) ** 3,
sqrt((asin(2 * x) + atan(x ** 2)) ** 3)]
for i, f in enumerate(fs, 5):
print(f'{i}.')
D = Derivative(f, x, 1)
for t in [D, D.doit()]:
pprint(t.factor())
print()
print()
入出力結果(Terminal, Jupyter(IPython))
$ ./sample5.py
5.
d
──(atan(3⋅x))
dx
3
────────
2
9⋅x + 1
6.
d
──(atan(√x))
dx
1
────────────
2⋅√x⋅(x + 1)
7.
d
──(acos(x) + asin(x))
dx
0
8.
d
──(x⋅asin(x))
dx
x
───────────── + asin(x)
__________
╱ 2
╲╱ - x + 1
9.
d
──(asin(sin(2⋅x)))
dx
2⋅cos(2⋅x)
────────────────────
_________________
╱ 2
╲╱ - sin (2⋅x) + 1
10.
d ⎛ 2 ⎞
──⎝x ⋅atan(2⋅x)⎠
dx
2
2⋅x
──────── + 2⋅x⋅atan(2⋅x)
2
4⋅x + 1
11.
d ⎛ sin(x)⎞
──⎜───────⎟
dx⎝asin(x)⎠
cos(x) sin(x)
─────── - ──────────────────────
asin(x) __________
╱ 2 2
╲╱ - x + 1 ⋅asin (x)
12.
d ⎛ ⎛ 2 ⎞⎞
──⎝-asin⎝x - cos(x)⎠⎠
dx
-(2⋅x + sin(x))
──────────────────────────
______________________
╱ 2
╱ ⎛ 2 ⎞
╲╱ - ⎝x - cos(x)⎠ + 1
13.
d ⎛ ⎛1⎞⎞
──⎜atan⎜─⎟⎟
dx⎝ ⎝x⎠⎠
-1
───────────
2 ⎛ 1 ⎞
x ⋅⎜1 + ──⎟
⎜ 2⎟
⎝ x ⎠
14.
d
──(atan(0.5⋅x))
dx
0.5
───────────
2
0.25⋅x + 1
15.
d ⎛ 3⎞
──⎝(asin(3⋅x) + 1) ⎠
dx
2
9⋅(asin(3⋅x) + 1)
──────────────────
____________
╱ 2
╲╱ - 9⋅x + 1
16.
⎛ _________________________⎞
⎜ ╱ 3 ⎟
d ⎜ ╱ ⎛ ⎛ 2⎞⎞ ⎟
──⎝╲╱ ⎝asin(2⋅x) + atan⎝x ⎠⎠ ⎠
dx
_________________________
╱ 3
⎛ 6⋅x 6 ⎞ ╱ ⎛ ⎛ 2⎞⎞
⎜────── + ───────────────⎟⋅╲╱ ⎝asin(2⋅x) + atan⎝x ⎠⎠
⎜ 4 ____________⎟
⎜x + 1 ╱ 2 ⎟
⎝ ╲╱ - 4⋅x + 1 ⎠
────────────────────────────────────────────────────────
⎛ ⎛ 2⎞⎞
2⋅⎝asin(2⋅x) + atan⎝x ⎠⎠
iMac:dir4 kamimura$ ./sample5.py
5.
d
──(atan(3⋅x))
dx
3
────────
2
9⋅x + 1
6.
d
──(atan(√x))
dx
1
────────────
2⋅√x⋅(x + 1)
7.
d
──(acos(x) + asin(x))
dx
0
8.
d
──(x⋅asin(x))
dx
__________
╱ 2
x + ╲╱ - x + 1 ⋅asin(x)
─────────────────────────
__________________
╲╱ -(x - 1)⋅(x + 1)
9.
d
──(asin(sin(2⋅x)))
dx
2⋅cos(2⋅x)
──────────────────────────────────
________________________________
╲╱ -(sin(2⋅x) - 1)⋅(sin(2⋅x) + 1)
10.
d ⎛ 2 ⎞
──⎝x ⋅atan(2⋅x)⎠
dx
⎛ 2 ⎞
2⋅x⋅⎝4⋅x ⋅atan(2⋅x) + x + atan(2⋅x)⎠
────────────────────────────────────
2
4⋅x + 1
11.
d ⎛ sin(x)⎞
──⎜───────⎟
dx⎝asin(x)⎠
__________
╱ 2
╲╱ - x + 1 ⋅cos(x)⋅asin(x) - sin(x)
─────────────────────────────────────
__________________ 2
╲╱ -(x - 1)⋅(x + 1) ⋅asin (x)
12.
d ⎛ ⎛ 2 ⎞⎞
──⎝-asin⎝x - cos(x)⎠⎠
dx
-(2⋅x + sin(x))
─────────────────────────────────────────
______________________________________
╱ ⎛ 2 ⎞ ⎛ 2 ⎞
╲╱ -⎝x - cos(x) - 1⎠⋅⎝x - cos(x) + 1⎠
13.
d ⎛ ⎛1⎞⎞
──⎜atan⎜─⎟⎟
dx⎝ ⎝x⎠⎠
-1
──────
2
x + 1
14.
d
──(atan(0.5⋅x))
dx
0.5
─────────────
2
0.25⋅x + 1.0
15.
d ⎛ 3 2 ⎞
──⎝asin (3⋅x) + 3⋅asin (3⋅x) + 3⋅asin(3⋅x) + 1⎠
dx
2
9⋅(asin(3⋅x) + 1)
────────────────────────
______________________
╲╱ -(3⋅x - 1)⋅(3⋅x + 1)
16.
⎛ ________________________________________________________________________
d ⎜ ╱ 3 2 ⎛ 2⎞ 2⎛ 2⎞ 3⎛ 2⎞
──⎝╲╱ asin (2⋅x) + 3⋅asin (2⋅x)⋅atan⎝x ⎠ + 3⋅asin(2⋅x)⋅atan ⎝x ⎠ + atan ⎝x ⎠
dx
⎞
⎟
⎠
_________________________
⎛ ____________ ⎞ ╱ 3
⎜ 4 ╱ 2 ⎟ ╱ ⎛ ⎛ 2⎞⎞
3⋅⎝x + x⋅╲╱ - 4⋅x + 1 + 1⎠⋅╲╱ ⎝asin(2⋅x) + atan⎝x ⎠⎠
────────────────────────────────────────────────────────────
______________________ ⎛ 4 ⎞ ⎛ ⎛ 2⎞⎞
╲╱ -(2⋅x - 1)⋅(2⋅x + 1) ⋅⎝x + 1⎠⋅⎝asin(2⋅x) + atan⎝x ⎠⎠
$
HTML5
<div id="graph0"></div> <pre id="output0"></pre> <label for="r0">r = </label> <input id="r0" type="number" min="0" value="0.5"> <label for="dx">dx = </label> <input id="dx" type="number" min="0" step="0.0001" value="0.001"> <br> <label for="x1">x1 = </label> <input id="x1" type="number" value="-5"> <label for="x2">x2 = </label> <input id="x2" type="number" value="5"> <br> <label for="y1">y1 = </label> <input id="y1" type="number" value="-5"> <label for="y2">y2 = </label> <input id="y2" type="number" value="5"> <br> <label for="dx0">dx0 = </label> <input id="dx0" type="number" min="0" step="0.0001" value="0.1"> <button id="draw0">draw</button> <button id="clear0">clear</button> <script type="text/javascript" src="https://cdnjs.cloudflare.com/ajax/libs/d3/4.2.6/d3.min.js" integrity="sha256-5idA201uSwHAROtCops7codXJ0vja+6wbBrZdQ6ETQc=" crossorigin="anonymous"></script> <script src="sample5.js"></script>
JavaScript
let div0 = document.querySelector('#graph0'),
pre0 = document.querySelector('#output0'),
width = 600,
height = 600,
padding = 50,
btn0 = document.querySelector('#draw0'),
btn1 = document.querySelector('#clear0'),
input_r = document.querySelector('#r0'),
input_dx = document.querySelector('#dx'),
input_x1 = document.querySelector('#x1'),
input_x2 = document.querySelector('#x2'),
input_y1 = document.querySelector('#y1'),
input_y2 = document.querySelector('#y2'),
input_dx0 = document.querySelector('#dx0'),
inputs = [input_r, input_dx, input_x1, input_x2, input_y1, input_y2,
input_dx0],
p = (x) => pre0.textContent += x + '\n',
range = (start, end, step=1) => {
let res = [];
for (let i = start; i < end; i += step) {
res.push(i);
}
return res;
};
let f = (x) => Math.asin(x),
g = (x) => Math.acos(x),
h = (x) => Math.atan(x),
f1 = (x) => 1 / Math.sqrt(1 - x ** 2),
g1 = (x) => -1 / Math.sqrt(1 - x ** 2),
h1 = (x) => 1 / (1 + x ** 2);
let draw = () => {
pre0.textContent = '';
let r = parseFloat(input_r.value),
dx = parseFloat(input_dx.value),
x1 = parseFloat(input_x1.value),
x2 = parseFloat(input_x2.value),
y1 = parseFloat(input_y1.value),
y2 = parseFloat(input_y2.value),
dx0 = parseFloat(input_dx0.value);
if (r === 0 || dx === 0 || x1 > x2 || y1 > y2) {
return;
}
let points = [],
lines = [],
fns = [[f, 'red'],
[g, 'green'],
[h, 'blue'],
[f1, 'orange'],
[g1, 'brown'],
[h1, 'skyblue']],
fns1 = [],
fns2 = [];
fns
.forEach((o) => {
let [f, color] = o;
for (let x = x1; x <= x2; x += dx) {
let y = f(x);
points.push([x, y, color]);
}
});
fns2
.forEach((o) => {
let [f, color] = o;
for (let x = x1; x <= x2; x += dx0) {
let g = f(x);
lines.push([x1, g(x1), x2, g(x2), color]);
}
});
let xscale = d3.scaleLinear()
.domain([x1, x2])
.range([padding, width - padding]);
let yscale = d3.scaleLinear()
.domain([y1, y2])
.range([height - padding, padding]);
let xaxis = d3.axisBottom().scale(xscale);
let yaxis = d3.axisLeft().scale(yscale);
div0.innerHTML = '';
let svg = d3.select('#graph0')
.append('svg')
.attr('width', width)
.attr('height', height);
svg.selectAll('line')
.data([[x1, 0, x2, 0], [0, y1, 0, y2]].concat(lines))
.enter()
.append('line')
.attr('x1', (d) => xscale(d[0]))
.attr('y1', (d) => yscale(d[1]))
.attr('x2', (d) => xscale(d[2]))
.attr('y2', (d) => yscale(d[3]))
.attr('stroke', (d) => d[4] || 'black');
svg.selectAll('circle')
.data(points)
.enter()
.append('circle')
.attr('cx', (d) => xscale(d[0]))
.attr('cy', (d) => yscale(d[1]))
.attr('r', r)
.attr('fill', (d) => d[2] || 'green');
svg.append('g')
.attr('transform', `translate(0, ${height - padding})`)
.call(xaxis);
svg.append('g')
.attr('transform', `translate(${padding}, 0)`)
.call(yaxis);
[fns, fns1, fns2].forEach((fs) => p(fs.join('\n')));
};
inputs.forEach((input) => input.onchange = draw);
btn0.onclick = draw;
btn1.onclick = () => pre0.textContent = '';
draw();
0 コメント:
コメントを投稿