学習環境
- Surface 3 (4G LTE)、Surface 3 タイプ カバー、Surface ペン(端末)
- Windows 10 Pro (OS)
- 数式入力ソフト(TeX, MathML): MathType
- MathML対応ブラウザ: Firefox、Safari
- MathML非対応ブラウザ(Internet Explorer, Google Chrome...)用JavaScript Library: MathJax
- 参考書籍
解析入門 原書第3版 (S.ラング(著)、松坂 和夫(翻訳)、片山 孝次(翻訳)、岩波書店)の第2部(微分と基本的な関数)、第5章(平均値の定理)、3(増加・減少関数)、補充問題34.を取り組んでみる。
円形の池の中心をO、PRの長さをx、∠ROQのなす角をΘとする。
よって最小の時間、最大の時間はそれぞれ以下のようになる。
コード(Emacs)
Python 3
#!/usr/bin/env python3 # -*- coding: utf-8 -*- from sympy import pprint, symbols, Derivative, solve, asin, sqrt, pi, plot print('34.') x = symbols('x', positive=True) f = x / 2 + asin(sqrt(1 - x ** 2)) / 4 d = Derivative(f, x, 1) f1 = d.doit() pprint(d) pprint(f1) s = solve(f1) pprint(s) pprint(f.subs({x: s[0]})) print(pi / 8 < 1 / 2) p = plot(f, (x, 0, 1), show=False, legend=True) p.save('sample34.svg')
入出力結果(Terminal, IPython)
$ ./sample34.py 34. ⎛ ⎛ __________⎞⎞ ⎜ ⎜ ╱ 2 ⎟⎟ d ⎜x asin⎝╲╱ - x + 1 ⎠⎟ ──⎜─ + ───────────────────⎟ dx⎝2 4 ⎠ 1 1 ─ - ─────────────── 2 __________ ╱ 2 4⋅╲╱ - x + 1 ⎡√3⎤ ⎢──⎥ ⎣2 ⎦ π √3 ── + ── 24 4 True $
HTML5
<div id="graph0"></div> <pre id="output0"></pre> <label for="r0">r = </label> <input id="r0" type="number" min="0" value="0.5"> <label for="dx">dx = </label> <input id="dx" type="number" min="0" step="0.0001" value="0.001"> <br> <label for="x1">x1 = </label> <input id="x1" type="number" value="0"> <label for="x2">x2 = </label> <input id="x2" type="number" value="1"> <br> <label for="y1">y1 = </label> <input id="y1" type="number" value="0"> <label for="y2">y2 = </label> <input id="y2" type="number" value="1"> <br> <label for="x0">x0 = </label> <input id="x0" type="number" min="0" max="1" step="0.01" value="0.5"> <button id="draw0">draw</button> <button id="clear0">clear</button> <script type="text/javascript" src="https://cdnjs.cloudflare.com/ajax/libs/d3/4.2.6/d3.min.js" integrity="sha256-5idA201uSwHAROtCops7codXJ0vja+6wbBrZdQ6ETQc=" crossorigin="anonymous"></script> <script src="sample34.js"></script>
JavaScript
let div0 = document.querySelector('#graph0'), pre0 = document.querySelector('#output0'), width = 600, height = 600, padding = 50, btn0 = document.querySelector('#draw0'), btn1 = document.querySelector('#clear0'), input_r = document.querySelector('#r0'), input_dx = document.querySelector('#dx'), input_x1 = document.querySelector('#x1'), input_x2 = document.querySelector('#x2'), input_y1 = document.querySelector('#y1'), input_y2 = document.querySelector('#y2'), input_x0 = document.querySelector('#x0'), inputs = [input_r, input_dx, input_x1, input_x2, input_y1, input_y2, input_x0], p = (x) => pre0.textContent += x + '\n', range = (start, end, step=1) => { let res = []; for (let i = start; i < end; i += step) { res.push(i); } return res; }; let f = (x) => x / 2 + Math.asin(Math.sqrt(1 - x ** 2)) / 4, g = (x) => Math.sqrt(1 / 4 - (x - 1 / 2) ** 2); let draw = () => { pre0.textContent = ''; let r = parseFloat(input_r.value), dx = parseFloat(input_dx.value), x1 = parseFloat(input_x1.value), x2 = parseFloat(input_x2.value), y1 = parseFloat(input_y1.value), y2 = parseFloat(input_y2.value), x0 = parseFloat(input_x0.value); if (r === 0 || dx === 0 || x1 > x2 || y1 > y2) { return; } let points = [], x3 = Math.sqrt(3) / 2, y3 = g(x0), lines = [[0, y1, 0, y2, 'red'], [x3, y1, x3, y2, 'red'], [x0, y1, x0, y2, 'brown'], [0, 0, x0, y3, 'blue'], [x0, y3, 1, 0, 'blue']], fns = [[f, 'orange'], [g, 'green']], fns1 = [], fns2 = []; fns .forEach((o) => { let [f, color] = o; for (let x = x1; x <= x2; x += dx) { let y = f(x); if (Math.abs(y) < Infinity) { points.push([x, y, color]); } } }); fns2 .forEach((o) => { let [f, color] = o; for (let x = x1; x <= x2; x += dx0) { let g = f(x); lines.push([x1, g(x1), x2, g(x2), color]); } }); let xscale = d3.scaleLinear() .domain([x1, x2]) .range([padding, width - padding]); let yscale = d3.scaleLinear() .domain([y1, y2]) .range([height - padding, padding]); let xaxis = d3.axisBottom().scale(xscale); let yaxis = d3.axisLeft().scale(yscale); div0.innerHTML = ''; let svg = d3.select('#graph0') .append('svg') .attr('width', width) .attr('height', height); svg.selectAll('line') .data([[x1, 0, x2, 0], [0, y1, 0, y2]].concat(lines)) .enter() .append('line') .attr('x1', (d) => xscale(d[0])) .attr('y1', (d) => yscale(d[1])) .attr('x2', (d) => xscale(d[2])) .attr('y2', (d) => yscale(d[3])) .attr('stroke', (d) => d[4] || 'black'); svg.selectAll('circle') .data(points) .enter() .append('circle') .attr('cx', (d) => xscale(d[0])) .attr('cy', (d) => yscale(d[1])) .attr('r', r) .attr('fill', (d) => d[2] || 'green'); svg.append('g') .attr('transform', `translate(0, ${height - padding})`) .call(xaxis); svg.append('g') .attr('transform', `translate(${padding}, 0)`) .call(yaxis); [fns, fns1, fns2].forEach((fs) => p(fs.join('\n'))); }; inputs.forEach((input) => input.onchange = draw); btn0.onclick = draw; btn1.onclick = () => pre0.textContent = ''; draw();
0 コメント:
コメントを投稿