学習環境
- Surface 3 (4G LTE)、Surface 3 タイプ カバー、Surface ペン(端末)
- Windows 10 Pro (OS)
- 数式入力ソフト(TeX, MathML): MathType
- MathML対応ブラウザ: Firefox、Safari
- MathML非対応ブラウザ(Internet Explorer, Microsoft Edge, Google Chrome...)用JavaScript Library: MathJax
- 参考書籍
解析入門〈2〉(松坂 和夫(著)、岩波書店)の第8章(積分の計算)、8.2(定積分の計算)、問題1-7.を取り組んでみる。
-
部分積分法を繰り返す。
コード(Emacs)
Python 3
#!/usr/bin/env python3 # -*- coding: utf-8 -*- from sympy import pprint, symbols, Integral, exp, sin, S, plot print('1.') x = symbols('x') a = symbols('a', positive=True) b = symbols('b', nonzero=True) fs = [(exp(- a * x) * sin(b * x), (0, S.Infinity))] for i, (f, (x1, x2)) in enumerate(fs, 6): print(f'({i})') I = Integral(f, (x, x1, x2)) pprint(I) I = I.doit() pprint(I) print('factor:') pprint(I.factor()) print('expand:') pprint(I.expand()) f = fs[0][0] p = plot(f.subs({a: 2, b: -3}), show=False, legend=True) p.save('sample1_7.svg')
入出力結果(Terminal, IPython)
$ ./sample1_7.py 1. (6) ∞ ⌠ ⎮ -a⋅x ⎮ ℯ ⋅sin(b⋅x) dx ⌡ 0 ⎧ 1 │ ⎛ 2 ⎞│ ⎪ ────────── for │periodic_argument⎝polar_lift (b), ∞⎠│ = 0 ⎪ ⎛ 2 ⎞ ⎪ ⎜a ⎟ ⎪ b⋅⎜── + 1⎟ ⎪ ⎜ 2 ⎟ ⎪ ⎝b ⎠ ⎨ ⎪∞ ⎪⌠ ⎪⎮ -a⋅x ⎪⎮ ℯ ⋅sin(b⋅x) dx otherwise ⎪⌡ ⎪0 ⎩ factor: ⎧ 1 │ ⎛ 2 ⎞│ ⎪ ────── for │periodic_argument⎝polar_lift (b), ∞⎠│ = 0 ⎪ 2 ⎪ a ⎪ ── + b ⎪ b ⎨ ⎪∞ ⎪⌠ ⎪⎮ -a⋅x ⎪⎮ ℯ ⋅sin(b⋅x) dx otherwise ⎪⌡ ⎩0 expand: ⎧ 1 │ ⎛ 2 ⎞│ ⎪ ────── for │periodic_argument⎝polar_lift (b), ∞⎠│ = 0 ⎪ 2 ⎪ a ⎪ ── + b ⎪ b ⎨ ⎪∞ ⎪⌠ ⎪⎮ -a⋅x ⎪⎮ ℯ ⋅sin(b⋅x) dx otherwise ⎪⌡ ⎩0 $
HTML5
<div id="graph0"></div> <pre id="output0"></pre> <label for="r0">r = </label> <input id="r0" type="number" min="0" value="0.5"> <label for="dx">dx = </label> <input id="dx" type="number" min="0" step="0.0001" value="0.001"> <br> <label for="x1">x1 = </label> <input id="x1" type="number" value="-5"> <label for="x2">x2 = </label> <input id="x2" type="number" value="5"> <br> <label for="y1">y1 = </label> <input id="y1" type="number" value="-5"> <label for="y2">y2 = </label> <input id="y2" type="number" value="5"> <br> <label for="a0">a = </label> <input id="a0" type="number" min="0" value="1"> <label for="b0">b = </label> <input id="b0" type="number" min="0" value="-2"> <button id="draw0">draw</button> <button id="clear0">clear</button> <script type="text/javascript" src="https://cdnjs.cloudflare.com/ajax/libs/d3/4.2.6/d3.min.js" integrity="sha256-5idA201uSwHAROtCops7codXJ0vja+6wbBrZdQ6ETQc=" crossorigin="anonymous"></script> <script src="sample1_7.js"></script>
JavaScript
let div0 = document.querySelector('#graph0'), pre0 = document.querySelector('#output0'), width = 600, height = 600, padding = 50, btn0 = document.querySelector('#draw0'), btn1 = document.querySelector('#clear0'), input_r = document.querySelector('#r0'), input_dx = document.querySelector('#dx'), input_x1 = document.querySelector('#x1'), input_x2 = document.querySelector('#x2'), input_y1 = document.querySelector('#y1'), input_y2 = document.querySelector('#y2'), input_a0 = document.querySelector('#a0'), input_b0 = document.querySelector('#b0'), inputs = [input_r, input_dx, input_x1, input_x2, input_y1, input_y2, input_a0, input_b0], p = (x) => pre0.textContent += x + '\n', range = (start, end, step=1) => { let res = []; for (let i = start; i < end; i += step) { res.push(i); } return res; }; let f = (x) => x * Math.asin(x) / Math.sqrt(1 - x ** 2); let draw = () => { pre0.textContent = ''; let r = parseFloat(input_r.value), dx = parseFloat(input_dx.value), x1 = parseFloat(input_x1.value), x2 = parseFloat(input_x2.value), y1 = parseFloat(input_y1.value), y2 = parseFloat(input_y2.value), a0 = parseFloat(input_a0.value), b0 = parseFloat(input_b0.value); if (r === 0 || dx === 0 || x1 > x2 || y1 > y2) { return; } let points = [], y3 = b0 / (a0 ** 2 + b0 ** 2), lines = [[x1, y3, x2, y3, 'blue']], f = (x) => Math.exp(-a0 * x) * Math.sin(b0 * x), g = (x) => (-a0 * Math.exp(-a0 * x) * Math.sin(b0 * x) - b0 * Math.exp(-a0 * x) * Math.cos(b0 * x)) / (a0 ** 2 + b0 ** 2), h = (x) => g(x) - g(0), fns = [[f, 'green'], [h, 'orange']]; fns .forEach((o) => { let [fn, color] = o; for (let x = x1; x <= x2; x += dx) { let y = fn(x); if (Math.abs(y) < Infinity) { points.push([x, y, color]); } } }); let xscale = d3.scaleLinear() .domain([x1, x2]) .range([padding, width - padding]); let yscale = d3.scaleLinear() .domain([y1, y2]) .range([height - padding, padding]); let xaxis = d3.axisBottom().scale(xscale); let yaxis = d3.axisLeft().scale(yscale); div0.innerHTML = ''; let svg = d3.select('#graph0') .append('svg') .attr('width', width) .attr('height', height); svg.selectAll('circle') .data(points) .enter() .append('circle') .attr('cx', (d) => xscale(d[0])) .attr('cy', (d) => yscale(d[1])) .attr('r', r) .attr('fill', (d) => d[2] || 'green'); svg.selectAll('line') .data([[x1, 0, x2, 0], [0, y1, 0, y2]].concat(lines)) .enter() .append('line') .attr('x1', (d) => xscale(d[0])) .attr('y1', (d) => yscale(d[1])) .attr('x2', (d) => xscale(d[2])) .attr('y2', (d) => yscale(d[3])) .attr('stroke', (d) => d[4] || 'black'); svg.append('g') .attr('transform', `translate(0, ${height - padding})`) .call(xaxis); svg.append('g') .attr('transform', `translate(${padding}, 0)`) .call(yaxis); p(fns.join('\n')); }; inputs.forEach((input) => input.onchange = draw); btn0.onclick = draw; btn1.onclick = () => pre0.textContent = ''; draw();
0 コメント:
コメントを投稿