学習環境
- Surface 3 (4G LTE)、Surface 3 タイプ カバー、Surface ペン(端末)
 - Windows 10 Pro (OS)
 - 数式入力ソフト(TeX, MathML): MathType
 - MathML対応ブラウザ: Firefox、Safari
 - MathML非対応ブラウザ(Internet Explorer, Google Chrome...)用JavaScript Library: MathJax
 - 参考書籍
 
数学読本〈4〉数列の極限,順列/順列・組合せ/確率/関数の極限と微分法(松坂 和夫(著)、岩波書店)の第17章(関数の変化をとらえる - 関数の極限と微分法)、17.5(いろいろな関数の導関数)、三角関数についての基本的な極限、問43.を取り組んでみる。
コード(Emacs)
Python 3
#!/usr/bin/env python3
# -*- coding: utf-8 -*-
from sympy import pprint, symbols, Limit, sin, cos, pi
x = symbols('x')
exprs = [(x * sin(1 / x), 0),
         (cos(pi / 2 * x) / (1 - x ** 2), 1)]
for i, (expr, x0) in enumerate(exprs, 9):
    print('({})'.format(i))
    for dir in ['+', '-']:
        l = Limit(expr, x, x0, dir=dir)
        pprint(l)
        pprint(l.doit())
入出力結果(Terminal, IPython)
$ ./sample43.py
(9)
          ⎛1⎞
 lim x⋅sin⎜─⎟
x─→0⁺     ⎝x⎠
0
          ⎛1⎞
 lim x⋅sin⎜─⎟
x─→0⁻     ⎝x⎠
0
(10)
        ⎛π⋅x⎞
     cos⎜───⎟
        ⎝ 2 ⎠
 lim ────────
x─→1⁺   2    
     - x  + 1
π
─
4
        ⎛π⋅x⎞
     cos⎜───⎟
        ⎝ 2 ⎠
 lim ────────
x─→1⁻   2    
     - x  + 1
π
─
4
$
						
0 コメント:
コメントを投稿