学習環境
- Surface 3 (4G LTE)、Surface 3 タイプ カバー、Surface ペン(端末)
- Windows 10 Pro (OS)
- 数式入力ソフト(TeX, MathML): MathType
- MathML対応ブラウザ: Firefox、Safari
- MathML非対応ブラウザ(Internet Explorer, Google Chrome...)用JavaScript Library: MathJax
- 参考書籍
数学読本〈4〉数列の極限,順列/順列・組合せ/確率/関数の極限と微分法(松坂 和夫(著)、岩波書店)の第17章(関数の変化をとらえる - 関数の極限と微分法)、17.3(導関数とその計算)、積および商の微分、問30.を取り組んでみる。
コード(Emacs)
Python 3
#!/usr/bin/env python3
# -*- coding: utf-8 -*-
from sympy import symbols, Derivative, pprint, factor
x = symbols('x')
print('30.')
exprs = [
(3, 2 - x),
(x, x ** 2 + 1),
(x ** 2 + 2, 3 * x + 4),
(x ** 2 - 2 * x + 6, x ** 2 + x + 2),
(x ** 2 + 3, x ** 3 - 4),
((3 * x + 2) ** 3, (2 * x - 1) ** 2)
]
for i, (num, den) in enumerate(exprs, 1):
print('({0})'.format(i))
expr = num / den
pprint(expr)
d = Derivative(expr, x)
pprint(d)
d = d.doit()
pprint(d)
pprint(factor(d))
入出力結果(Terminal, IPython)
$ ./sample30.py
30.
(1)
3
──────
-x + 2
d ⎛ 3 ⎞
──⎜──────⎟
dx⎝-x + 2⎠
3
─────────
2
(-x + 2)
3
────────
2
(x - 2)
(2)
x
──────
2
x + 1
d ⎛ x ⎞
──⎜──────⎟
dx⎜ 2 ⎟
⎝x + 1⎠
2
2⋅x 1
- ───────── + ──────
2 2
⎛ 2 ⎞ x + 1
⎝x + 1⎠
-(x - 1)⋅(x + 1)
─────────────────
2
⎛ 2 ⎞
⎝x + 1⎠
(3)
2
x + 2
───────
3⋅x + 4
⎛ 2 ⎞
d ⎜ x + 2⎟
──⎜───────⎟
dx⎝3⋅x + 4⎠
⎛ 2 ⎞
2⋅x 3⋅⎝x + 2⎠
─────── - ──────────
3⋅x + 4 2
(3⋅x + 4)
2
3⋅x + 8⋅x - 6
──────────────
2
(3⋅x + 4)
(4)
2
x - 2⋅x + 6
────────────
2
x + x + 2
⎛ 2 ⎞
d ⎜x - 2⋅x + 6⎟
──⎜────────────⎟
dx⎜ 2 ⎟
⎝ x + x + 2 ⎠
⎛ 2 ⎞
(-2⋅x - 1)⋅⎝x - 2⋅x + 6⎠ 2⋅x - 2
───────────────────────── + ──────────
2 2
⎛ 2 ⎞ x + x + 2
⎝x + x + 2⎠
2
3⋅x - 8⋅x - 10
───────────────
2
⎛ 2 ⎞
⎝x + x + 2⎠
(5)
2
x + 3
──────
3
x - 4
⎛ 2 ⎞
d ⎜x + 3⎟
──⎜──────⎟
dx⎜ 3 ⎟
⎝x - 4⎠
2 ⎛ 2 ⎞
3⋅x ⋅⎝x + 3⎠ 2⋅x
- ───────────── + ──────
2 3
⎛ 3 ⎞ x - 4
⎝x - 4⎠
⎛ 3 ⎞
-x⋅⎝x + 9⋅x + 8⎠
──────────────────
2
⎛ 3 ⎞
⎝x - 4⎠
(6)
3
(3⋅x + 2)
──────────
2
(2⋅x - 1)
⎛ 3⎞
d ⎜(3⋅x + 2) ⎟
──⎜──────────⎟
dx⎜ 2⎟
⎝(2⋅x - 1) ⎠
2 3
9⋅(3⋅x + 2) 4⋅(3⋅x + 2)
──────────── - ────────────
2 3
(2⋅x - 1) (2⋅x - 1)
2
(3⋅x + 2) ⋅(6⋅x - 17)
─────────────────────
3
(2⋅x - 1)
$
HTML5
<div id="graph0"></div> <pre id="output0"></pre> <label for="r0">r = </label> <input id="r0" type="number" min="0" value="0.5"> <label for="dx">dx = </label> <input id="dx" type="number" min="0" step="0.0001" value="0.001"> <br> <label for="x1">x1 = </label> <input id="x1" type="number" value="-10"> <label for="x2">x2 = </label> <input id="x2" type="number" value="10"> <br> <label for="y1">y1 = </label> <input id="y1" type="number" value="-10"> <label for="y2">y2 = </label> <input id="y2" type="number" value="10"> <button id="draw0">draw</button> <button id="clear0">clear</button> <script type="text/javascript" src="https://cdnjs.cloudflare.com/ajax/libs/d3/4.2.6/d3.min.js" integrity="sha256-5idA201uSwHAROtCops7codXJ0vja+6wbBrZdQ6ETQc=" crossorigin="anonymous"></script> <script src="sample30.js"></script>
JavaScript
let div0 = document.querySelector('#graph0'),
pre0 = document.querySelector('#output0'),
width = 600,
height = 600,
padding = 50,
btn0 = document.querySelector('#draw0'),
btn1 = document.querySelector('#clear0'),
input_r = document.querySelector('#r0'),
input_dx = document.querySelector('#dx'),
input_x1 = document.querySelector('#x1'),
input_x2 = document.querySelector('#x2'),
input_y1 = document.querySelector('#y1'),
input_y2 = document.querySelector('#y2'),
inputs = [input_r, input_dx, input_x1, input_x2, input_y1, input_y2],
p = (x) => pre0.textContent += x + '\n',
range = (start, end, step=1) => {
let res = [];
for (let i = start; i < end; i += step) {
res.push(i);
}
return res;
};
let draw = () => {
pre0.textContent = '';
let r = parseFloat(input_r.value),
dx = parseFloat(input_dx.value),
x1 = parseFloat(input_x1.value),
x2 = parseFloat(input_x2.value),
y1 = parseFloat(input_y1.value),
y2 = parseFloat(input_y2.value);
if (r === 0 || dx === 0 || x1 > x2 || y1 > y2) {
return;
}
let points = [],
f = (x) => (3 * x + 2) ** 3 / (2 * x - 1) ** 2
for (let x = x1; x <= x2; x += dx) {
let y = f(x);
if (Math.abs(y) < Infinity) {
points.push([x, y]);
}
}
let xscale = d3.scaleLinear()
.domain([x1, x2])
.range([padding, width - padding]);
let yscale = d3.scaleLinear()
.domain([y1, y2])
.range([height - padding, padding]);
let xaxis = d3.axisBottom().scale(xscale);
let yaxis = d3.axisLeft().scale(yscale);
div0.innerHTML = '';
let svg = d3.select('#graph0')
.append('svg')
.attr('width', width)
.attr('height', height);
svg.selectAll('circle')
.data(points)
.enter()
.append('circle')
.attr('cx', (d) => xscale(d[0]))
.attr('cy', (d) => yscale(d[1]))
.attr('r', r)
.attr('fill', 'green');
svg.selectAll('line')
.data([[x1, 0, x2, 0], [0, y1, 0, y2]])
.enter()
.append('line')
.attr('x1', (d) => xscale(d[0]))
.attr('y1', (d) => yscale(d[1]))
.attr('x2', (d) => xscale(d[2]))
.attr('y2', (d) => yscale(d[3]))
.attr('stroke', 'black');
svg.append('g')
.attr('transform', `translate(0, ${height - padding})`)
.call(xaxis);
svg.append('g')
.attr('transform', `translate(${padding}, 0)`)
.call(yaxis);
};
inputs.forEach((input) => input.onchange = draw);
btn0.onclick = draw;
btn1.onclick = () => pre0.textContent = '';
draw();
0 コメント:
コメントを投稿