## 2018年11月27日火曜日

### 数学 – Python - JavaScript - 数学はここから始まる - 数 – 2次方程式と複素数 – 因数定理(整式を割り切るための定数)

1. x-3で割り切れる場合。

$\begin{array}{}P\left(3\right)\\ =27-54+3k+6k\\ =-27+9k\\ -27+9k=0\\ k=3\end{array}$

x +2で割り切れる場合。

$\begin{array}{}p\left(-2\right)\\ =-8-24-2k+6k\\ =-32+4k\\ -32+4k=0\\ k=8\end{array}$

コード(Emacs)

Python 3

#!/usr/bin/env python3
from sympy import pprint, symbols, plot

print('19.')

x, k = symbols('x, k', real=True)

p = x ** 3 - 6 * x ** 2 + k * x + 6 * k
ps = [p.subs({k: k0}) for k0 in [3, 8]]
for p0 in ps:
pprint(p0.factor())

p = plot(*ps, legend=True, show=False)
colors = ['red', 'green']
for i, color in enumerate(colors):
p[i].line_color = color
p.save('sample19.svg')


$./sample19.py 19. ⎛ 2 ⎞ (x - 3)⋅⎝x - 3⋅x - 6⎠ ⎛ 2 ⎞ (x + 2)⋅⎝x - 8⋅x + 24⎠$


HTML5

<div id="graph0"></div>
<pre id="output0"></pre>
<label for="r0">r = </label>
<input id="r0" type="number" min="0" value="1">
<label for="dx">dx = </label>
<input id="dx" type="number" min="0" step="0.001" value="0.001">
<br>
<label for="x1">x1 = </label>
<input id="x1" type="number" value="-5">
<label for="x2">x2 = </label>
<input id="x2" type="number" value="5">
<br>
<label for="y1">y1 = </label>
<input id="y1" type="number" value="-5">
<label for="y2">y2 = </label>
<input id="y2" type="number" value="5">

<button id="draw0">draw</button>
<button id="clear0">clear</button>

<script type="text/javascript" src="https://cdnjs.cloudflare.com/ajax/libs/d3/4.2.6/d3.min.js" integrity="sha256-5idA201uSwHAROtCops7codXJ0vja+6wbBrZdQ6ETQc=" crossorigin="anonymous"></script>

<script src="sample19.js"></script>


JavaScript

let div0 = document.querySelector('#graph0'),
pre0 = document.querySelector('#output0'),
width = 600,
height = 600,
btn0 = document.querySelector('#draw0'),
btn1 = document.querySelector('#clear0'),
input_r = document.querySelector('#r0'),
input_dx = document.querySelector('#dx'),
input_x1 = document.querySelector('#x1'),
input_x2 = document.querySelector('#x2'),
input_y1 = document.querySelector('#y1'),
input_y2 = document.querySelector('#y2'),
inputs = [input_r, input_dx, input_x1, input_x2, input_y1, input_y2],
p = (x) => pre0.textContent += x + '\n';

let pk = (x, k) => x ** 3 - 6 * x ** 2 + k * x + 6 * k,
fns = [[x => pk(x, 3), 'red'],
[x => pk(x, 8), 'green']];

let draw = () => {
pre0.textContent = '';

let r = parseFloat(input_r.value),
dx = parseFloat(input_dx.value),
x1 = parseFloat(input_x1.value),
x2 = parseFloat(input_x2.value),
y1 = parseFloat(input_y1.value),
y2 = parseFloat(input_y2.value);

if (r === 0 || dx === 0 || x1 > x2 || y1 > y2) {
return;
}

let points = [],
lines = [[3, y1, 3, y2, 'orange'],
[-2, y1, -2, y2, 'brown']];

fns
.forEach((o) => {
let [f, color] = o;
for (let x = x1; x <= x2; x += dx) {
let y = f(x);

points.push([x, y, color]);
}
});

let xscale = d3.scaleLinear()
.domain([x1, x2])
let yscale = d3.scaleLinear()
.domain([y1, y2])

let xaxis = d3.axisBottom().scale(xscale);
let yaxis = d3.axisLeft().scale(yscale);
div0.innerHTML = '';
let svg = d3.select('#graph0')
.append('svg')
.attr('width', width)
.attr('height', height);

svg.selectAll('line')
.data([[x1, 0, x2, 0], [0, y1, 0, y2]].concat(lines))
.enter()
.append('line')
.attr('x1', (d) => xscale(d[0]))
.attr('y1', (d) => yscale(d[1]))
.attr('x2', (d) => xscale(d[2]))
.attr('y2', (d) => yscale(d[3]))
.attr('stroke', (d) => d[4] || 'black');

svg.selectAll('circle')
.data(points)
.enter()
.append('circle')
.attr('cx', (d) => xscale(d[0]))
.attr('cy', (d) => yscale(d[1]))
.attr('r', r)
.attr('fill', (d) => d[2] || 'green');

svg.append('g')
.attr('transform', translate(0, ${height - padding})) .call(xaxis); svg.append('g') .attr('transform', translate(${padding}, 0))
.call(yaxis);

[fns].forEach((fs) => p(fs.join('\n')));
};

inputs.forEach((input) => input.onchange = draw);
btn0.onclick = draw;
btn1.onclick = () => pre0.textContent = '';
draw();