2018年10月1日月曜日

学習環境

解析入門 原書第3版 (S.ラング(著)、松坂 和夫(翻訳)、片山 孝次(翻訳)、岩波書店)の第3部(積分)、第11章(積分の計算)、補充問題(三角関数に関する積分)22.を取り組んでみる。


  1. x = a cos t dx dt = - a sin t a 2 - x 2 x 2 dx = a sin t a 2 cos 2 t · - a sin t dt = - tan 2 t dt = - tan t - t = - tan arccos x a + arccos x a

コード(Emacs)

Python 3

#!/usr/bin/env python3
from sympy import pprint, symbols, Integral, plot, sqrt, tan, acos, Derivative

print('22.')

a, x = symbols('a, x')
f = sqrt(a ** 2 - x ** 2) / x ** 2
I = Integral(f, x)
for t in [I, I.doit().simplify()]:
    pprint(t)
    print()

a0 = 2
p = plot(f.subs({a: a0}), I.doit().simplify().subs(
    {a: a0}), legend=True, show=False)
colors = ['red', 'green']
for i, c in enumerate(colors):
    p[i].line_color = c
p.save('sample22.svg')

g = -tan(acos(x / a)) + acos(x / a)
d = Derivative(g, x, 1)
for t in [d, d.doit()]:
    pprint(t)
    print()

入出力結果(Terminal, Jupyter(IPython))

$ ./sample22.py
22.
⌠                
⎮    _________   
⎮   ╱  2    2    
⎮ ╲╱  a  - x     
⎮ ──────────── dx
⎮       2        
⎮      x         
⌡                

⎧            _________                           
⎪           ╱       2                            
⎪          ╱       x                             
⎪  ⅈ⋅a⋅   ╱   -1 + ──                            
⎪        ╱          2                    │ 2│    
⎪      ╲╱          a            ⎛x⎞      │x │    
⎪- ─────────────────── + ⅈ⋅acosh⎜─⎟  for │──│ > 1
⎪           x                   ⎝a⎠      │ 2│    
⎪                                        │a │    
⎨                                                
⎪             ________                           
⎪            ╱      2                            
⎪           ╱      x                             
⎪     a⋅   ╱   1 - ──                            
⎪         ╱         2                            
⎪       ╲╱         a         ⎛x⎞                 
⎪   - ──────────────── - asin⎜─⎟      otherwise  
⎪            x               ⎝a⎠                 
⎩                                                

  ⎛          ________          ⎞
  ⎜         ╱      2           ⎟
  ⎜        ╱      x            ⎟
  ⎜  a⋅   ╱   1 - ──           ⎟
  ⎜      ╱         2           ⎟
∂ ⎜    ╲╱         a         ⎛x⎞⎟
──⎜- ──────────────── + acos⎜─⎟⎟
∂x⎝         x               ⎝a⎠⎠

        ________
       ╱      2 
      ╱      x  
a⋅   ╱   1 - ── 
    ╱         2 
  ╲╱         a  
────────────────
        2       
       x        

$

HTML5

<div id="graph0"></div>
<pre id="output0"></pre>
<label for="r0">r = </label>
<input id="r0" type="number" min="0" value="0.5">
<label for="dx">dx = </label>
<input id="dx" type="number" min="0" step="0.001" value="0.001">
<br>
<label for="x1">x1 = </label>
<input id="x1" type="number" value="-5">
<label for="x2">x2 = </label>
<input id="x2" type="number" value="5">
<br>
<label for="y1">y1 = </label>
<input id="y1" type="number" value="-5">
<label for="y2">y2 = </label>
<input id="y2" type="number" value="5">

<button id="draw0">draw</button>
<button id="clear0">clear</button>

<script type="text/javascript" src="https://cdnjs.cloudflare.com/ajax/libs/d3/4.2.6/d3.min.js" integrity="sha256-5idA201uSwHAROtCops7codXJ0vja+6wbBrZdQ6ETQc=" crossorigin="anonymous"></script>

<script src="sample22.js"></script>

JavaScript

let div0 = document.querySelector('#graph0'),
    pre0 = document.querySelector('#output0'),
    width = 600,
    height = 600,
    padding = 50,
    btn0 = document.querySelector('#draw0'),
    btn1 = document.querySelector('#clear0'),
    input_r = document.querySelector('#r0'),
    input_dx = document.querySelector('#dx'),
    input_x1 = document.querySelector('#x1'),
    input_x2 = document.querySelector('#x2'),
    input_y1 = document.querySelector('#y1'),
    input_y2 = document.querySelector('#y2'),
    input_n0 = document.querySelector('#n0'),
    inputs = [input_r, input_dx, input_x1, input_x2, input_y1, input_y2],
    p = (x) => pre0.textContent += x + '\n';

let f = (x) => Math.sqrt(2 ** 2 - x ** 2) / x ** 2,
    g = (x) => -Math.tan(Math.acos(x / 2)) + Math.acos(x / 2),
    fns = [[f, 'red'],
           [g, 'green']];

let draw = () => {
    pre0.textContent = '';

    let r = parseFloat(input_r.value),
        dx = parseFloat(input_dx.value),
        x1 = parseFloat(input_x1.value),
        x2 = parseFloat(input_x2.value),
        y1 = parseFloat(input_y1.value),
        y2 = parseFloat(input_y2.value);

    if (r === 0 || dx === 0 || x1 > x2 || y1 > y2) {
        return;
    }    
    
    let points = [],
        lines = [];

    fns
        .forEach((o) => {
            let [f, color] = o;
            for (let x = x1; x <= x2; x += dx) {
                let y = f(x);

                points.push([x, y, color]);
            }
        });
    
    let xscale = d3.scaleLinear()
        .domain([x1, x2])
        .range([padding, width - padding]);
    let yscale = d3.scaleLinear()
        .domain([y1, y2])
        .range([height - padding, padding]);

    let xaxis = d3.axisBottom().scale(xscale);
    let yaxis = d3.axisLeft().scale(yscale);
    div0.innerHTML = '';
    let svg = d3.select('#graph0')
        .append('svg')
        .attr('width', width)
        .attr('height', height);

    svg.selectAll('line')
        .data([[x1, 0, x2, 0], [0, y1, 0, y2]].concat(lines))
        .enter()
        .append('line')
        .attr('x1', (d) => xscale(d[0]))
        .attr('y1', (d) => yscale(d[1]))
        .attr('x2', (d) => xscale(d[2]))
        .attr('y2', (d) => yscale(d[3]))
        .attr('stroke', (d) => d[4] || 'black');

    svg.selectAll('circle')
        .data(points)
        .enter()
        .append('circle')
        .attr('cx', (d) => xscale(d[0]))
        .attr('cy', (d) => yscale(d[1]))
        .attr('r', r)
        .attr('fill', (d) => d[2] || 'green');

    svg.append('g')
        .attr('transform', `translate(0, ${height - padding})`)
        .call(xaxis);

    svg.append('g')
        .attr('transform', `translate(${padding}, 0)`)
        .call(yaxis);

    [fns].forEach((fs) => p(fs.join('\n')));
};

inputs.forEach((input) => input.onchange = draw);
btn0.onclick = draw;
btn1.onclick = () => pre0.textContent = '';
draw();







0 コメント:

コメントを投稿

関連コンテンツ