2018年10月24日水曜日

学習環境

解析入門 原書第3版 (S.ラング(著)、松坂 和夫(翻訳)、片山 孝次(翻訳)、岩波書店)の第3部(積分)、第12章(いくつかの計算練習)、2(スターリングの公式)の定理2の証明4、5、6.を取り組んでみる。


  1. 定理の証明の3より、

    1 2 log 1 + x 1 - x - x - x 3 3 1 - x 2 = ψ x ψ 0 = 0 1 2 log 1 + x 1 - x - x = x 3 1 - x 2 = 0 x = 0 0 < x < 1 ψ x < 0 1 2 log 1 + x 1 - x - x - x 3 3 1 - x 2 < 0 1 2 log 1 + x 1 - x - x < x 3 3 1 - x 2


    よって、 x が 0以上1未満の場合、

    0 1 2 log 1 + x 1 - x - x x 3 3 1 - x 2

    が成り立つ。


  2. 1 + x 1 - x = 1 + 1 2 n + 1 1 - 1 2 n + 1 = 2 n + 1 + 1 2 n + 1 - 1 = 2 n + 2 2 n = n + 1 n

    また、

    x 3 3 1 - x 2 = 1 2 n + 1 3 3 · 1 - 1 2 n + 1 2 = 1 3 2 n + 1 2 n + 1 2 - 1 = 1 3 2 n + 1 4 n 2 + 4 n = 1 12 2 n + 1 n 2 + n

  3. 4、5 より、

    0 1 2 log n + 1 n - 1 2 n + 1 1 12 2 n + 1 n 2 + n

    よって、

    0 · 2 n + 1 2 n + 1 1 2 log n + 1 n - 1 2 n + 1 2 n + 1 · 1 12 2 n + 1 n 2 + n 0 n + 1 2 log n + 1 n - 1 1 12 n 2 + n = 1 12 1 n n + 1 = 1 12 1 n - 1 n + 1

    が成り立つ。

コード(Emacs)

Python 3

#!/usr/bin/env python3
from sympy import pprint, symbols, Rational, log, Derivative, plot

print('4.')

x = symbols('x')
f = Rational(1, 2) * log((1 + x) / (1 - x)) - x

g = x ** 3 / (3 * (1 - x ** 2))

p = plot(f, g, (x, 0, 1), ylim=(-0.1, 0.1), show=False, legend=True)
colors = ['red', 'green']
for i, color in enumerate(colors):
    p[i].line_color = color
p.save('sample2.svg')
print('5.')
n = symbols('n')
d = {x: 1 / (2 * n + 1)}
pprint(g.subs(d).factor())

print('6.')
for func in [f, g]:
    fn = func.subs(d)
    for t in [fn, fn.factor(), fn.expand(), fn.simplify()]:
        pprint(t)
        print()
    print()

入出力結果(Terminal, Jupyter(IPython))

$ ./sample2.py
4.
5.
          1           
──────────────────────
12⋅n⋅(n + 1)⋅(2⋅n + 1)
6.
   ⎛       1   ⎞          
   ⎜1 + ───────⎟          
   ⎜    2⋅n + 1⎟          
log⎜───────────⎟          
   ⎜       1   ⎟          
   ⎜1 - ───────⎟          
   ⎝    2⋅n + 1⎠      1   
──────────────── - ───────
       2           2⋅n + 1

       ⎛             1                     1     ⎞      ⎛             1       
2⋅n⋅log⎜─────────────────────────── + ───────────⎟ + log⎜─────────────────────
       ⎜        2⋅n            1             1   ⎟      ⎜        2⋅n          
       ⎜2⋅n - ─────── + 1 - ───────   1 - ───────⎟      ⎜2⋅n - ─────── + 1 - ─
       ⎝      2⋅n + 1       2⋅n + 1       2⋅n + 1⎠      ⎝      2⋅n + 1       2
──────────────────────────────────────────────────────────────────────────────
                                              2⋅(2⋅n + 1)                     

              1     ⎞    
────── + ───────────⎟ - 2
  1             1   ⎟    
──────   1 - ───────⎟    
⋅n + 1       2⋅n + 1⎠    
─────────────────────────
                         

   ⎛             1                     1     ⎞          
log⎜─────────────────────────── + ───────────⎟          
   ⎜        2⋅n            1             1   ⎟          
   ⎜2⋅n - ─────── + 1 - ───────   1 - ───────⎟          
   ⎝      2⋅n + 1       2⋅n + 1       2⋅n + 1⎠      1   
────────────────────────────────────────────── - ───────
                      2                          2⋅n + 1

             ⎛n + 1⎞    
(2⋅n + 1)⋅log⎜─────⎟ - 2
             ⎝  n  ⎠    
────────────────────────
      2⋅(2⋅n + 1)       


             1             
───────────────────────────
⎛        3     ⎞          3
⎜3 - ──────────⎟⋅(2⋅n + 1) 
⎜             2⎟           
⎝    (2⋅n + 1) ⎠           

          1           
──────────────────────
12⋅n⋅(n + 1)⋅(2⋅n + 1)

                                             1                                
──────────────────────────────────────────────────────────────────────────────
                3                        2                                    
    3       24⋅n             2       36⋅n                     18⋅n            
24⋅n  - ────────────── + 36⋅n  - ────────────── + 18⋅n - ────────────── + 3 - 
           2                        2                       2                 
        4⋅n  + 4⋅n + 1           4⋅n  + 4⋅n + 1          4⋅n  + 4⋅n + 1       

              
──────────────
              
      3       
──────────────
   2          
4⋅n  + 4⋅n + 1

          1          
─────────────────────
     ⎛   2          ⎞
12⋅n⋅⎝2⋅n  + 3⋅n + 1⎠


$

HTML5

<div id="graph0"></div>
<pre id="output0"></pre>
<label for="r0">r = </label>
<input id="r0" type="number" min="0" value="0.5">
<label for="dx">dx = </label>
<input id="dx" type="number" min="0" step="0.001" value="0.001">
<br>
<label for="x1">x1 = </label>
<input id="x1" type="number" value="-2">
<label for="x2">x2 = </label>
<input id="x2" type="number" value="2">
<br>
<label for="y1">y1 = </label>
<input id="y1" type="number" value="-2">
<label for="y2">y2 = </label>
<input id="y2" type="number" value="2">

<button id="draw0">draw</button>
<button id="clear0">clear</button>

<script type="text/javascript" src="https://cdnjs.cloudflare.com/ajax/libs/d3/4.2.6/d3.min.js" integrity="sha256-5idA201uSwHAROtCops7codXJ0vja+6wbBrZdQ6ETQc=" crossorigin="anonymous"></script>

<script src="sample2.js"></script>

JavaScript

let div0 = document.querySelector('#graph0'),
    pre0 = document.querySelector('#output0'),
    width = 600,
    height = 600,
    padding = 50,
    btn0 = document.querySelector('#draw0'),
    btn1 = document.querySelector('#clear0'),
    input_r = document.querySelector('#r0'),
    input_dx = document.querySelector('#dx'),
    input_x1 = document.querySelector('#x1'),
    input_x2 = document.querySelector('#x2'),
    input_y1 = document.querySelector('#y1'),
    input_y2 = document.querySelector('#y2'),
    input_n0 = document.querySelector('#n0'),
    inputs = [input_r, input_dx, input_x1, input_x2, input_y1, input_y2],
    p = (x) => pre0.textContent += x + '\n';

let f = (x) => 1 / 2 * Math.log((1 + x) / (1 - x)) - x,
    fns = [[f, 'red'],
           [(x) => x ** 3 / (3 * (1 - x ** 2)), 'green']];

let draw = () => {
    pre0.textContent = '';

    let r = parseFloat(input_r.value),
        dx = parseFloat(input_dx.value),
        x1 = parseFloat(input_x1.value),
        x2 = parseFloat(input_x2.value),
        y1 = parseFloat(input_y1.value),
        y2 = parseFloat(input_y2.value);

    if (r === 0 || dx === 0 || x1 > x2 || y1 > y2) {
        return;
    }    
    
    let points = [],
        lines = [[0, y1, 0, y2, 'blue'],
                 [1, y1, 1, y2, 'brown']];
    
    fns
        .forEach((o) => {
            let [f, color] = o;
            for (let x = x1; x <= x2; x += dx) {
                let y = f(x);

                points.push([x, y, color]);
            }
        });
    
    let xscale = d3.scaleLinear()
        .domain([x1, x2])
        .range([padding, width - padding]);
    let yscale = d3.scaleLinear()
        .domain([y1, y2])
        .range([height - padding, padding]);

    let xaxis = d3.axisBottom().scale(xscale);
    let yaxis = d3.axisLeft().scale(yscale);
    div0.innerHTML = '';
    let svg = d3.select('#graph0')
        .append('svg')
        .attr('width', width)
        .attr('height', height);

    svg.selectAll('line')
        .data([[x1, 0, x2, 0], [0, y1, 0, y2]].concat(lines))
        .enter()
        .append('line')
        .attr('x1', (d) => xscale(d[0]))
        .attr('y1', (d) => yscale(d[1]))
        .attr('x2', (d) => xscale(d[2]))
        .attr('y2', (d) => yscale(d[3]))
        .attr('stroke', (d) => d[4] || 'black');

    svg.selectAll('circle')
        .data(points)
        .enter()
        .append('circle')
        .attr('cx', (d) => xscale(d[0]))
        .attr('cy', (d) => yscale(d[1]))
        .attr('r', r)
        .attr('fill', (d) => d[2] || 'green');

    svg.append('g')
        .attr('transform', `translate(0, ${height - padding})`)
        .call(xaxis);

    svg.append('g')
        .attr('transform', `translate(${padding}, 0)`)
        .call(yaxis);

    [fns].forEach((fs) => p(fs.join('\n')));
};

inputs.forEach((input) => input.onchange = draw);
btn0.onclick = draw;
btn1.onclick = () => pre0.textContent = '';
draw();







0 コメント:

コメントを投稿

関連コンテンツ