学習環境
- Surface 3 (4G LTE)、Surface 3 タイプ カバー、Surface ペン(端末)
- Windows 10 Pro (OS)
- Nebo(Windows アプリ)
- iPad Pro + Apple Pencil
- MyScript Nebo(iPad アプリ)
- 参考書籍
解析入門〈3〉(松坂 和夫(著)、岩波書店)の第14章(多変数の関数)、14.3(極値問題)、問題1-(d).を取り組んでみる。
の場合。
の場合。
の場合。
の場合。
よって、臨界点は、
(原点を中心とするも径1の円の円周上の点)
第2次偏導関数の計算。
よって、
は狭義の極小点である。
の場合。
よって極値点ではない。
の場合。
よって狭義の極大点である。
の場合。
よって極値点ではない。
の場合。
よって、狭義の極大点である。
円周上の点について。
累乗関数と指数関数の関係より、 円周上の点は広義の極大点である。
macOS High Sierraの標準搭載されているグラフ作成ソフト、Grapher で作成。
a < b
a > b
a = b
コード(Emacs)
Python 3
#!/usr/bin/env python3 from sympy import pprint, symbols, Derivative, exp, solve x, y, a, b = symbols('x, y, a, b') f = exp(-x ** 2 - y ** 2) * (a * x ** 2 + b * y ** 2) for t in [x, y]: for n in range(1, 3): D = Derivative(f, t, n) for s in [D, D.doit()]: pprint(s) print() Dxy = Derivative(Derivative(f, x, 1).doit(), y, 1).doit() pprint(Dxy) delta = Dxy - Derivative(f, x, 2).doit() * Derivative(f, y, 2).doit() critical_point = solve( (Derivative(f, x, 1).doit(), Derivative(f, y, 1).doit()), dict=True) for t in [delta, critical_point]: pprint(t) print()
入出力結果(Terminal, Jupyter(IPython))
$ ./sample1.py ⎛ 2 2⎞ ∂ ⎜⎛ 2 2⎞ - x - y ⎟ ──⎝⎝a⋅x + b⋅y ⎠⋅ℯ ⎠ ∂x 2 2 2 2 - x - y ⎛ 2 2⎞ - x - y 2⋅a⋅x⋅ℯ - 2⋅x⋅⎝a⋅x + b⋅y ⎠⋅ℯ 2⎛ 2 2⎞ ∂ ⎜⎛ 2 2⎞ - x - y ⎟ ───⎝⎝a⋅x + b⋅y ⎠⋅ℯ ⎠ 2 ∂x 2 2 ⎛ 2 2 2 ⎛ 2 2⎞⎞ - x - y 2⋅⎝- 5⋅a⋅x + a - b⋅y + 2⋅x ⋅⎝a⋅x + b⋅y ⎠⎠⋅ℯ ⎛ 2 2⎞ ∂ ⎜⎛ 2 2⎞ - x - y ⎟ ──⎝⎝a⋅x + b⋅y ⎠⋅ℯ ⎠ ∂y 2 2 2 2 - x - y ⎛ 2 2⎞ - x - y 2⋅b⋅y⋅ℯ - 2⋅y⋅⎝a⋅x + b⋅y ⎠⋅ℯ 2⎛ 2 2⎞ ∂ ⎜⎛ 2 2⎞ - x - y ⎟ ───⎝⎝a⋅x + b⋅y ⎠⋅ℯ ⎠ 2 ∂y 2 2 ⎛ 2 2 2 ⎛ 2 2⎞⎞ - x - y 2⋅⎝- a⋅x - 5⋅b⋅y + b + 2⋅y ⋅⎝a⋅x + b⋅y ⎠⎠⋅ℯ 2 2 2 2 2 2 - x - y - x - y ⎛ 2 2⎞ - x - y - 4⋅a⋅x⋅y⋅ℯ - 4⋅b⋅x⋅y⋅ℯ + 4⋅x⋅y⋅⎝a⋅x + b⋅y ⎠⋅ℯ 2 2 2 2 2 2 - x - y - x - y ⎛ 2 2⎞ - x - y - 4⋅a⋅x⋅y⋅ℯ - 4⋅b⋅x⋅y⋅ℯ + 4⋅x⋅y⋅⎝a⋅x + b⋅y ⎠⋅ℯ - 4 ⎛ 2 2 2 ⎛ 2 2⎞⎞ ⎛ 2 2 2 ⎛ 2 ⋅⎝- 5⋅a⋅x + a - b⋅y + 2⋅x ⋅⎝a⋅x + b⋅y ⎠⎠⋅⎝- a⋅x - 5⋅b⋅y + b + 2⋅y ⋅⎝a⋅x 2 2 2⎞⎞ - 2⋅x - 2⋅y + b⋅y ⎠⎠⋅ℯ ⎡ ⎧ __________⎫ ⎧ _________ ⎢ ⎨ ╱ 2 ⎬ ⎨ ╱ 2 ⎣{a: 0, b: 0}, {a: 0, y: 0}, ⎩a: b, x: -╲╱ - y + 1 ⎭, ⎩a: b, x: ╲╱ - y + 1 _⎫ ⎤ ⎬ ⎥ ⎭, {b: 0, x: 0}, {x: 0, y: -1}, {x: 0, y: 0}, {x: 0, y: 1}⎦ $
HTML5
<div id="graph0"></div> <pre id="output0"></pre> <label for="r0">r = </label> <input id="r0" type="number" min="0" value="0.5"> <label for="dx">dx = </label> <input id="dx" type="number" min="0" step="0.0001" value="0.005"> <br> <label for="x1">x1 = </label> <input id="x1" type="number" value="-5"> <label for="x2">x2 = </label> <input id="x2" type="number" value="5"> <br> <label for="y1">y1 = </label> <input id="y1" type="number" value="-5"> <label for="y2">y2 = </label> <input id="y2" type="number" value="5"> <br> <label for="x0">x0 = </label> <input id="x0" type="number" value="0"> <label for="y0">y0 = </label> <input id="y0" type="number" value="0"> <br> <label for="a0">a0 = </label> <input id="a0" type="number" value="1"> <label for="b0">b0 = </label> <input id="b0" type="number" value="2"> <button id="draw0">draw</button> <button id="clear0">clear</button> <script type="text/javascript" src="https://cdnjs.cloudflare.com/ajax/libs/d3/4.2.6/d3.min.js" integrity="sha256-5idA201uSwHAROtCops7codXJ0vja+6wbBrZdQ6ETQc=" crossorigin="anonymous"></script> <script src="sample1.js"></script>
JavaScript
let div0 = document.querySelector('#graph0'), pre0 = document.querySelector('#output0'), width = 600, height = 600, padding = 50, btn0 = document.querySelector('#draw0'), btn1 = document.querySelector('#clear0'), input_r = document.querySelector('#r0'), input_dx = document.querySelector('#dx'), input_x1 = document.querySelector('#x1'), input_x2 = document.querySelector('#x2'), input_y1 = document.querySelector('#y1'), input_y2 = document.querySelector('#y2'), input_x0 = document.querySelector('#x0'), input_y0 = document.querySelector('#y0'), input_a0 = document.querySelector('#a0'), input_b0 = document.querySelector('#b0'), inputs = [input_r, input_dx, input_x1, input_x2, input_y1, input_y2, input_x0, input_y0, input_a0, input_b0], p = (x) => pre0.textContent += x + '\n', range = (start, end, step=1) => { let res = []; for (let i = start; i < end; i += step) { res.push(i); } return res; }; let draw = () => { pre0.textContent = ''; let r = parseFloat(input_r.value), dx = parseFloat(input_dx.value), x1 = parseFloat(input_x1.value), x2 = parseFloat(input_x2.value), y1 = parseFloat(input_y1.value), y2 = parseFloat(input_y2.value), x0 = parseFloat(input_x0.value), y0 = parseFloat(input_y0.value), a0 = parseFloat(input_a0.value), b0 = parseFloat(input_b0.value); if (r === 0 || dx === 0 || x1 > x2 || y1 > y2) { return; } let points = [], f = (x, y) => Math.exp(-(x ** 2) - (y ** 2)) * (a0 * x ** 2 + b0 * y ** 2), g = (x) => f(x, y0), h = (y) => f(x0, y), lines = [], fns = [[g, 'red'], [h, 'green']]; fns .forEach((o) => { let [fn, color] = o; for (let x = x1; x <= x2; x += dx) { let y = fn(x); if (Math.abs(y) < Infinity) { points.push([x, y, color]); } } }); let xscale = d3.scaleLinear() .domain([x1, x2]) .range([padding, width - padding]); let yscale = d3.scaleLinear() .domain([y1, y2]) .range([height - padding, padding]); let xaxis = d3.axisBottom().scale(xscale); let yaxis = d3.axisLeft().scale(yscale); div0.innerHTML = ''; let svg = d3.select('#graph0') .append('svg') .attr('width', width) .attr('height', height); svg.selectAll('circle') .data(points) .enter() .append('circle') .attr('cx', (d) => xscale(d[0])) .attr('cy', (d) => yscale(d[1])) .attr('r', r) .attr('fill', (d) => d[2] || 'green'); svg.selectAll('line') .data([[x1, 0, x2, 0], [0, y1, 0, y2]].concat(lines)) .enter() .append('line') .attr('x1', (d) => xscale(d[0])) .attr('y1', (d) => yscale(d[1])) .attr('x2', (d) => xscale(d[2])) .attr('y2', (d) => yscale(d[3])) .attr('stroke', (d) => d[4] || 'black'); svg.append('g') .attr('transform', `translate(0, ${height - padding})`) .call(xaxis); svg.append('g') .attr('transform', `translate(${padding}, 0)`) .call(yaxis); p(fns.join('\n')); }; inputs.forEach((input) => input.onchange = draw); btn0.onclick = draw; btn1.onclick = () => pre0.textContent = ''; draw();
0 コメント:
コメントを投稿