学習環境
- Surface 3 (4G LTE)、Surface 3 タイプ カバー、Surface ペン(端末)
- Windows 10 Pro (OS)
- Nebo(Windows アプリ)
- iPad Pro + Apple Pencil
- MyScript Nebo(iPad アプリ)
- 参考書籍
解析入門〈3〉(松坂 和夫(著)、岩波書店)の第14章(多変数の関数)、14.2(高次偏導関数、テイラーの定理)、問題3-(c).を取り組んでみる。
コード(Emacs)
Python 3
#!/usr/bin/env python3
from sympy import pprint, symbols, exp, Function, Derivative
u, v = symbols('u, v')
x = exp(u) + exp(v)
y = exp(-u) + exp(-v)
f = Function('f')(x, y)
expr = Derivative(f, u, 2) + 2 * Derivative(Derivative(f, v, 1),
u, 1) + Derivative(f, v, 2)
for t in [expr, expr.doit(), expr.doit().factor()]:
pprint(t)
print()
入出力結果(Terminal, Jupyter(IPython))
$ ./sample3.py
⎛ ⎛ 2 ⎞│ ⎛⎛ 2 ⎞│
⎜ v ⎜ ∂ ⎛ ⎛ -v -u⎞⎞⎟│ -v ⎜⎜ ∂ ⎟│
2⋅⎜ℯ ⋅⎜────⎝f⎝ξ₁, ℯ + ℯ ⎠⎠⎟│ - ℯ ⋅⎜⎜───────(f(ξ₁, ξ₂))⎟│ u
⎜ ⎜ 2 ⎟│ u v ⎝⎝∂ξ₂ ∂ξ₁ ⎠│ξ₁=ℯ +
⎝ ⎝∂ξ₁ ⎠│ξ₁=ℯ + ℯ
⎞│ ⎞ ⎛ ⎛⎛ 2 ⎞│ ⎞│
⎟│ ⎟ u ⎜ v ⎜⎜ ∂ ⎟│ ⎟│
v⎟│ -v -u⎟⋅ℯ - 2⋅⎜ℯ ⋅⎜⎜───────(f(ξ₁, ξ₂))⎟│ -v -u⎟│ u v -
ℯ ⎠│ξ₂=ℯ + ℯ ⎟ ⎜ ⎝⎝∂ξ₂ ∂ξ₁ ⎠│ξ₂=ℯ + ℯ ⎠│ξ₁=ℯ + ℯ
⎠ ⎝
⎛ 2 ⎞│ ⎞ 2
-v ⎜ ∂ ⎛ ⎛ u v ⎞⎞⎟│ ⎟ -u ∂ ⎛ ⎛ u v -v -u⎞⎞ ∂
ℯ ⋅⎜────⎝f⎝ℯ + ℯ , ξ₂⎠⎠⎟│ ⎟⋅ℯ + ───⎝f⎝ℯ + ℯ , ℯ + ℯ ⎠⎠ + ──
⎜ 2 ⎟│ -v -u⎟ 2
⎝∂ξ₂ ⎠│ξ₂=ℯ + ℯ ⎠ ∂u ∂v
2
⎛ ⎛ u v -v -u⎞⎞
─⎝f⎝ℯ + ℯ , ℯ + ℯ ⎠⎠
2
⎛ ⎛ 2 ⎞│ ⎛⎛ 2 ⎞│
⎜ u ⎜ ∂ ⎛ ⎛ -v -u⎞⎞⎟│ -u ⎜⎜ ∂ ⎟│
⎜ℯ ⋅⎜────⎝f⎝ξ₁, ℯ + ℯ ⎠⎠⎟│ - ℯ ⋅⎜⎜───────(f(ξ₁, ξ₂))⎟│ u v
⎜ ⎜ 2 ⎟│ u v ⎝⎝∂ξ₂ ∂ξ₁ ⎠│ξ₁=ℯ + ℯ
⎝ ⎝∂ξ₁ ⎠│ξ₁=ℯ + ℯ
⎞│ ⎞ ⎛ ⎛⎛ 2 ⎞│ ⎞│
⎟│ ⎟ u ⎜ u ⎜⎜ ∂ ⎟│ ⎟│ -u
⎟│ -v -u⎟⋅ℯ - ⎜ℯ ⋅⎜⎜───────(f(ξ₁, ξ₂))⎟│ -v -u⎟│ u v - ℯ ⋅
⎠│ξ₂=ℯ + ℯ ⎟ ⎜ ⎝⎝∂ξ₂ ∂ξ₁ ⎠│ξ₂=ℯ + ℯ ⎠│ξ₁=ℯ + ℯ
⎠ ⎝
⎛ 2 ⎞│ ⎞ ⎛ ⎛ 2 ⎞│
⎜ ∂ ⎛ ⎛ u v ⎞⎞⎟│ ⎟ -u ⎜ v ⎜ ∂ ⎛ ⎛ -v -u⎞⎞⎟│
⎜────⎝f⎝ℯ + ℯ , ξ₂⎠⎠⎟│ ⎟⋅ℯ + 2⋅⎜ℯ ⋅⎜────⎝f⎝ξ₁, ℯ + ℯ ⎠⎠⎟│
⎜ 2 ⎟│ -v -u⎟ ⎜ ⎜ 2 ⎟│
⎝∂ξ₂ ⎠│ξ₂=ℯ + ℯ ⎠ ⎝ ⎝∂ξ₁ ⎠│ξ₁=ℯ
⎛⎛ 2 ⎞│ ⎞│ ⎞ ⎛ ⎛ 2
-v ⎜⎜ ∂ ⎟│ ⎟│ ⎟ u ⎜ v ⎜ ∂ ⎛ ⎛
- ℯ ⋅⎜⎜───────(f(ξ₁, ξ₂))⎟│ u v⎟│ -v -u⎟⋅ℯ + ⎜ℯ ⋅⎜────⎝f⎝
u v ⎝⎝∂ξ₂ ∂ξ₁ ⎠│ξ₁=ℯ + ℯ ⎠│ξ₂=ℯ + ℯ ⎟ ⎜ ⎜ 2
+ ℯ ⎠ ⎝ ⎝∂ξ₁
⎞│ ⎛⎛ 2 ⎞│ ⎞│
-v -u⎞⎞⎟│ -v ⎜⎜ ∂ ⎟│ ⎟│
ξ₁, ℯ + ℯ ⎠⎠⎟│ - ℯ ⋅⎜⎜───────(f(ξ₁, ξ₂))⎟│ u v⎟│ -v
⎟│ u v ⎝⎝∂ξ₂ ∂ξ₁ ⎠│ξ₁=ℯ + ℯ ⎠│ξ₂=ℯ + ℯ
⎠│ξ₁=ℯ + ℯ
⎞ ⎛ ⎛⎛ 2 ⎞│ ⎞│ ⎛ 2
⎟ v ⎜ v ⎜⎜ ∂ ⎟│ ⎟│ -v ⎜ ∂ ⎛ ⎛ u
-u⎟⋅ℯ - ⎜ℯ ⋅⎜⎜───────(f(ξ₁, ξ₂))⎟│ -v -u⎟│ u v - ℯ ⋅⎜────⎝f⎝ℯ +
⎟ ⎜ ⎝⎝∂ξ₂ ∂ξ₁ ⎠│ξ₂=ℯ + ℯ ⎠│ξ₁=ℯ + ℯ ⎜ 2
⎠ ⎝ ⎝∂ξ₂
⎞│ ⎞ ⎛ ⎛⎛ 2 ⎞│ ⎞│
v ⎞⎞⎟│ ⎟ -v ⎜ v ⎜⎜ ∂ ⎟│ ⎟│
ℯ , ξ₂⎠⎠⎟│ ⎟⋅ℯ - 2⋅⎜ℯ ⋅⎜⎜───────(f(ξ₁, ξ₂))⎟│ -v -u⎟│ u
⎟│ -v -u⎟ ⎜ ⎝⎝∂ξ₂ ∂ξ₁ ⎠│ξ₂=ℯ + ℯ ⎠│ξ₁=ℯ
⎠│ξ₂=ℯ + ℯ ⎠ ⎝
⎛ 2 ⎞│ ⎞
-v ⎜ ∂ ⎛ ⎛ u v ⎞⎞⎟│ ⎟ -u u ⎛ ∂ ⎛ ⎛ -v -u
v - ℯ ⋅⎜────⎝f⎝ℯ + ℯ , ξ₂⎠⎠⎟│ ⎟⋅ℯ + ℯ ⋅⎜───⎝f⎝ξ₁, ℯ + ℯ
+ ℯ ⎜ 2 ⎟│ -v -u⎟ ⎝∂ξ₁
⎝∂ξ₂ ⎠│ξ₂=ℯ + ℯ ⎠
⎞⎞⎞│ v ⎛ ∂ ⎛ ⎛ -v -u⎞⎞⎞│ -v ⎛ ∂ ⎛ ⎛ u v
⎠⎠⎟│ u v + ℯ ⋅⎜───⎝f⎝ξ₁, ℯ + ℯ ⎠⎠⎟│ u v + ℯ ⋅⎜───⎝f⎝ℯ + ℯ , ξ
⎠│ξ₁=ℯ + ℯ ⎝∂ξ₁ ⎠│ξ₁=ℯ + ℯ ⎝∂ξ₂
⎞⎞⎞│ -u ⎛ ∂ ⎛ ⎛ u v ⎞⎞⎞│
₂⎠⎠⎟│ -v -u + ℯ ⋅⎜───⎝f⎝ℯ + ℯ , ξ₂⎠⎠⎟│ -v -u
⎠│ξ₂=ℯ + ℯ ⎝∂ξ₂ ⎠│ξ₂=ℯ + ℯ
⎛ ⎛ 2 ⎞│ ⎛ 2
⎛ u v⎞ ⎜ 3⋅u 2⋅v ⎜ ∂ ⎛ ⎛ -v -u⎞⎞⎟│ 2⋅u 3⋅v ⎜ ∂ ⎛ ⎛
⎝ℯ + ℯ ⎠⋅⎜ℯ ⋅ℯ ⋅⎜────⎝f⎝ξ₁, ℯ + ℯ ⎠⎠⎟│ + ℯ ⋅ℯ ⋅⎜────⎝f⎝ξ
⎜ ⎜ 2 ⎟│ u v ⎜ 2
⎝ ⎝∂ξ₁ ⎠│ξ₁=ℯ + ℯ ⎝∂ξ₁
⎞│
-v -u⎞⎞⎟│ 2⋅u 2⋅v ⎛ ∂ ⎛ ⎛ -v -u⎞⎞⎞│
₁, ℯ + ℯ ⎠⎠⎟│ + ℯ ⋅ℯ ⋅⎜───⎝f⎝ξ₁, ℯ + ℯ ⎠⎠⎟│ u v - 2⋅
⎟│ u v ⎝∂ξ₁ ⎠│ξ₁=ℯ + ℯ
⎠│ξ₁=ℯ + ℯ
⎛⎛ 2 ⎞│ ⎞│ ⎛⎛ 2
2⋅u v ⎜⎜ ∂ ⎟│ ⎟│ u 2⋅v ⎜⎜ ∂
ℯ ⋅ℯ ⋅⎜⎜───────(f(ξ₁, ξ₂))⎟│ -v -u⎟│ u v - 2⋅ℯ ⋅ℯ ⋅⎜⎜───────(f
⎝⎝∂ξ₂ ∂ξ₁ ⎠│ξ₂=ℯ + ℯ ⎠│ξ₁=ℯ + ℯ ⎝⎝∂ξ₂ ∂ξ₁
⎞│ ⎞│
⎟│ ⎟│ u v ⎛ ∂ ⎛ ⎛ u v ⎞⎞⎞│
(ξ₁, ξ₂))⎟│ -v -u⎟│ u v + ℯ ⋅ℯ ⋅⎜───⎝f⎝ℯ + ℯ , ξ₂⎠⎠⎟│ -v -u
⎠│ξ₂=ℯ + ℯ ⎠│ξ₁=ℯ + ℯ ⎝∂ξ₂ ⎠│ξ₂=ℯ + ℯ
⎛ 2 ⎞│ ⎛ 2 ⎞│
u ⎜ ∂ ⎛ ⎛ u v ⎞⎞⎟│ v ⎜ ∂ ⎛ ⎛ u v ⎞⎞⎟│
+ ℯ ⋅⎜────⎝f⎝ℯ + ℯ , ξ₂⎠⎠⎟│ + ℯ ⋅⎜────⎝f⎝ℯ + ℯ , ξ₂⎠⎠⎟│
⎜ 2 ⎟│ -v -u ⎜ 2 ⎟│ -v
⎝∂ξ₂ ⎠│ξ₂=ℯ + ℯ ⎝∂ξ₂ ⎠│ξ₂=ℯ +
⎞
⎟ -2⋅u -2⋅v
⎟⋅ℯ ⋅ℯ
-u⎟
ℯ ⎠
$
0 コメント:
コメントを投稿