## 2018年1月26日金曜日

### 数学 - Python - JavaScript - 解析学 - 積分 - 積分の性質 - 積分の性質(不定積分、原始関数、累乗、三角関数(正弦、余弦)、指数関数、対数関数)

1. ${x}^{4}$

2. $\frac{3}{5}{x}^{5}-\frac{1}{6}{x}^{6}$

3. $-2\mathrm{cos}x+3\mathrm{sin}x$

4. $\frac{9}{5}{x}^{\frac{5}{3}}+5\mathrm{sin}x$

5. $5{e}^{x}+\mathrm{log}\left|x\right|$

コード(Emacs)

Python 3

#!/usr/bin/env python3
from sympy import pprint, symbols, root, sin, cos, exp, Integral, plot

x = symbols('x', real=True)
fs = [4 * x ** 3,
3 * x ** 4 - x ** 5,
2 * sin(x) + 3 * cos(x),
3 * root(x, 3) ** 2 + 5 * cos(x),
5 * exp(x) + 1 / x]

for i, f in enumerate(fs, 1):
print(f'{i}.')
I = Integral(f, x)
for t in [I, I.doit()]:
pprint(t)
print()
print()

p = plot(*fs, ylim=(-5, 5), show=False, legend=True)
for i, color in enumerate(['red', 'green', 'blue', 'orange', 'purple']):
p[i].line_color = color
p.save('sample1.svg')


$./sample1.py 1. ⌠ ⎮ 3 ⎮ 4⋅x dx ⌡ 4 x 2. ⌠ ⎮ ⎛ 5 4⎞ ⎮ ⎝- x + 3⋅x ⎠ dx ⌡ 6 5 x 3⋅x - ── + ──── 6 5 3. ⌠ ⎮ (2⋅sin(x) + 3⋅cos(x)) dx ⌡ 3⋅sin(x) - 2⋅cos(x) 4. ⌠ ⎮ ⎛ 2/3 ⎞ ⎮ ⎝3⋅x + 5⋅cos(x)⎠ dx ⌡ 5/3 9⋅x ────── + 5⋅sin(x) 5 5. ⌠ ⎮ ⎛ x 1⎞ ⎮ ⎜5⋅ℯ + ─⎟ dx ⎮ ⎝ x⎠ ⌡ x 5⋅ℯ + log(x)$


HTML5

.<div id="graph0"></div>
<pre id="output0"></pre>
<label for="r0">r = </label>
<input id="r0" type="number" min="0" value="0.5">
<label for="dx">dx = </label>
<input id="dx" type="number" min="0" step="0.001" value="0.001">
<br>
<label for="x1">x1 = </label>
<input id="x1" type="number" value="-10">
<label for="x2">x2 = </label>
<input id="x2" type="number" value="10">
<br>
<label for="y1">y1 = </label>
<input id="y1" type="number" value="-10">
<label for="y2">y2 = </label>
<input id="y2" type="number" value="10">

<button id="draw0">draw</button>
<button id="clear0">clear</button>

<script type="text/javascript" src="https://cdnjs.cloudflare.com/ajax/libs/d3/4.2.6/d3.min.js" integrity="sha256-5idA201uSwHAROtCops7codXJ0vja+6wbBrZdQ6ETQc=" crossorigin="anonymous"></script>

<script src="sample1.js"></script>


JavaScript

let div0 = document.querySelector('#graph0'),
pre0 = document.querySelector('#output0'),
width = 600,
height = 600,
btn0 = document.querySelector('#draw0'),
btn1 = document.querySelector('#clear0'),
input_r = document.querySelector('#r0'),
input_dx = document.querySelector('#dx'),
input_x1 = document.querySelector('#x1'),
input_x2 = document.querySelector('#x2'),
input_y1 = document.querySelector('#y1'),
input_y2 = document.querySelector('#y2'),
inputs = [input_r, input_dx, input_x1, input_x2, input_y1, input_y2],
p = (x) => pre0.textContent += x + '\n',
range = (start, end, step=1) => {
let res = [];
for (let i = start; i < end; i += step) {
res.push(i);
}
return res;
};

let fns = [[(x) => 4 * x ** 3, 'red'],
[(x) => 3 * x ** 4 - x ** 5, 'green'],
[(x) => 2 * Math.sin(x) + 3 * Math.cos(x), 'blue'],
[(x) => 3 * x ** (2 / 3) + 5 * Math.cos(x), 'orange'],
[(x) => 5 * Math.exp(x) + 1 / x, 'purple']];

let draw = () => {
pre0.textContent = '';

let r = parseFloat(input_r.value),
dx = parseFloat(input_dx.value),
x1 = parseFloat(input_x1.value),
x2 = parseFloat(input_x2.value),
y1 = parseFloat(input_y1.value),
y2 = parseFloat(input_y2.value);

if (r === 0 || dx === 0 || x1 > x2 || y1 > y2) {
return;
}

let points = [],
lines = [],
fns1 = [],
fns2 = [];

fns
.forEach((o) => {
let [f, color] = o;
for (let x = x1; x <= x2; x += dx) {
let y = f(x);

points.push([x, y, color]);
}
});

fns1
.forEach((o) => {
let [f, color] = o;

lines.push([x1, f(x1), x2, f(x2), color]);
});

fns2
.forEach((o) => {
let [f, color] = o;
for (let x = x1; x <= x2; x += dx0) {
let g = f(x);
lines.push([x1, g(x1), x2, g(x2), color]);
}
});

let xscale = d3.scaleLinear()
.domain([x1, x2])
let yscale = d3.scaleLinear()
.domain([y1, y2])

let xaxis = d3.axisBottom().scale(xscale);
let yaxis = d3.axisLeft().scale(yscale);
div0.innerHTML = '';
let svg = d3.select('#graph0')
.append('svg')
.attr('width', width)
.attr('height', height);

svg.selectAll('line')
.data([[x1, 0, x2, 0], [0, y1, 0, y2]].concat(lines))
.enter()
.append('line')
.attr('x1', (d) => xscale(d[0]))
.attr('y1', (d) => yscale(d[1]))
.attr('x2', (d) => xscale(d[2]))
.attr('y2', (d) => yscale(d[3]))
.attr('stroke', (d) => d[4] || 'black');

svg.selectAll('circle')
.data(points)
.enter()
.append('circle')
.attr('cx', (d) => xscale(d[0]))
.attr('cy', (d) => yscale(d[1]))
.attr('r', r)
.attr('fill', (d) => d[2] || 'green');

svg.append('g')
.attr('transform', translate(0, ${height - padding})) .call(xaxis); svg.append('g') .attr('transform', translate(${padding}, 0))
.call(yaxis);

[fns, fns1, fns2].forEach((fs) => p(fs.join('\n')));
};

inputs.forEach((input) => input.onchange = draw);
btn0.onclick = draw;
btn1.onclick = () => pre0.textContent = '';
draw();

.