## 2018年1月27日土曜日

### 数学 - Python - JavaScript - 解析学 - 積分 - 積分の性質 - 積分の性質(定積分の計算、三角関数(正弦、余弦)、累乗(べき乗)、指数関数)

1. $\begin{array}{}{\left[-\mathrm{cos}x+\mathrm{sin}x\right]}_{-\pi }^{\pi }\\ =\left(-\mathrm{cos}\pi +\mathrm{cos}\left(-\pi \right)\right)\\ =1-1\\ =0\end{array}$

2. $0$

3. ${\left[{e}^{x}\right]}_{-1}^{2}={e}^{2}-{e}^{-1}$

4. ${\left[\frac{4}{3}{x}^{3}\right]}_{-1}^{3}=\frac{4}{3}\left(27+1\right)=\frac{112}{3}$

コード(Emacs)

Python 3

#!/usr/bin/env python3
from sympy import pprint, symbols, sin, cos, exp, pi, Integral, plot

x = symbols('x', real=True)
fs = [(sin(x) + cos(x), (-pi, pi)),
(2 * x ** 5, (-1, 1)),
(exp(x), (-1, 2)),
(4 * x ** 2, (-1, 3))]

for i, (f, (a, b)) in enumerate(fs, 6):
print(f'{i}.')
I = Integral(f, (x, a, b))
for t in [I, I.doit()]:
pprint(t)
print()
print()

p = plot(*[f for f, _ in fs], ylim=(-5, 5), show=False, legend=True)
for i, color in enumerate(['red', 'green', 'blue', 'orange']):
p[i].line_color = color
p.save('sample6.svg')


$./sample6.py 6. π ⌠ ⎮ (sin(x) + cos(x)) dx ⌡ -π 0 7. 1 ⌠ ⎮ 5 ⎮ 2⋅x dx ⌡ -1 0 8. 2 ⌠ ⎮ x ⎮ ℯ dx ⌡ -1 -1 2 - ℯ + ℯ 9. 3 ⌠ ⎮ 2 ⎮ 4⋅x dx ⌡ -1 112/3$


HTML5

.<div id="graph0"></div>
<pre id="output0"></pre>
<label for="r0">r = </label>
<input id="r0" type="number" min="0" value="0.5">
<label for="dx">dx = </label>
<input id="dx" type="number" min="0" step="0.001" value="0.001">
<br>
<label for="x1">x1 = </label>
<input id="x1" type="number" value="-5">
<label for="x2">x2 = </label>
<input id="x2" type="number" value="5">
<br>
<label for="y1">y1 = </label>
<input id="y1" type="number" value="-5">
<label for="y2">y2 = </label>
<input id="y2" type="number" value="5">

<button id="draw0">draw</button>
<button id="clear0">clear</button>

<script type="text/javascript" src="https://cdnjs.cloudflare.com/ajax/libs/d3/4.2.6/d3.min.js" integrity="sha256-5idA201uSwHAROtCops7codXJ0vja+6wbBrZdQ6ETQc=" crossorigin="anonymous"></script>

<script src="sample6.js"></script>


JavaScript

let div0 = document.querySelector('#graph0'),
pre0 = document.querySelector('#output0'),
width = 600,
height = 600,
btn0 = document.querySelector('#draw0'),
btn1 = document.querySelector('#clear0'),
input_r = document.querySelector('#r0'),
input_dx = document.querySelector('#dx'),
input_x1 = document.querySelector('#x1'),
input_x2 = document.querySelector('#x2'),
input_y1 = document.querySelector('#y1'),
input_y2 = document.querySelector('#y2'),
inputs = [input_r, input_dx, input_x1, input_x2, input_y1, input_y2],
p = (x) => pre0.textContent += x + '\n',
range = (start, end, step=1) => {
let res = [];
for (let i = start; i < end; i += step) {
res.push(i);
}
return res;
};

let fns = [[(x) => Math.sin(x) + Math.cos(x), 'red'],
[(x) => 2 * x ** 5, 'green'],
[(x) => Math.exp(x), 'blue'],
[(x) => 4 * x ** 2, 'orange']];

let draw = () => {
pre0.textContent = '';

let r = parseFloat(input_r.value),
dx = parseFloat(input_dx.value),
x1 = parseFloat(input_x1.value),
x2 = parseFloat(input_x2.value),
y1 = parseFloat(input_y1.value),
y2 = parseFloat(input_y2.value);

if (r === 0 || dx === 0 || x1 > x2 || y1 > y2) {
return;
}

let points = [],
lines = [[-Math.PI, y1, -Math.PI, y2, 'red'],
[Math.PI, y1, Math.PI, y2, 'red'],
[-1, y1, -1, y2, 'green'],
[1, y1, 1, y2, 'green'],
[-1, y1, -1, y2, 'blue'],
[2, y1, 2, y2, 'blue'],
[-1, y1, -1, y2, 'orange'],
[3, y1, 3, y2, 'orange']],
fns1 = [],
fns2 = [];

fns
.forEach((o) => {
let [f, color] = o;
for (let x = x1; x <= x2; x += dx) {
let y = f(x);

points.push([x, y, color]);
}
});

fns1
.forEach((o) => {
let [f, color] = o;

lines.push([x1, f(x1), x2, f(x2), color]);
});

fns2
.forEach((o) => {
let [f, color] = o;
for (let x = x1; x <= x2; x += dx0) {
let g = f(x);
lines.push([x1, g(x1), x2, g(x2), color]);
}
});

let xscale = d3.scaleLinear()
.domain([x1, x2])
let yscale = d3.scaleLinear()
.domain([y1, y2])

let xaxis = d3.axisBottom().scale(xscale);
let yaxis = d3.axisLeft().scale(yscale);
div0.innerHTML = '';
let svg = d3.select('#graph0')
.append('svg')
.attr('width', width)
.attr('height', height);

svg.selectAll('line')
.data([[x1, 0, x2, 0], [0, y1, 0, y2]].concat(lines))
.enter()
.append('line')
.attr('x1', (d) => xscale(d[0]))
.attr('y1', (d) => yscale(d[1]))
.attr('x2', (d) => xscale(d[2]))
.attr('y2', (d) => yscale(d[3]))
.attr('stroke', (d) => d[4] || 'black');

svg.selectAll('circle')
.data(points)
.enter()
.append('circle')
.attr('cx', (d) => xscale(d[0]))
.attr('cy', (d) => yscale(d[1]))
.attr('r', r)
.attr('fill', (d) => d[2] || 'green');

svg.append('g')
.attr('transform', translate(0, ${height - padding})) .call(xaxis); svg.append('g') .attr('transform', translate(${padding}, 0))
.call(yaxis);

[fns, fns1, fns2].forEach((fs) => p(fs.join('\n')));
};

inputs.forEach((input) => input.onchange = draw);
btn0.onclick = draw;
btn1.onclick = () => pre0.textContent = '';
draw();

.