学習環境
- Surface 3 (4G LTE)、Surface 3 タイプ カバー、Surface ペン(端末)
- Windows 10 Pro (OS)
- Nebo(Windows アプリ)
- iPad Pro + Apple Pencil
- MyScript Nebo(iPad アプリ)
- 参考書籍
線型代数入門(松坂 和夫(著)、岩波書店)の第5章(行列式)、7(積の行列式)、問題3.を取り組んでみる。
問題の3点が1直線上にあるための必要十分条件は、連立1次方程式、
が自明でない解をもつことと同等なので、定理5.12より、
を考えれば、
コード(Emacs)
Python 3
#!/usr/bin/env python3
from sympy import pprint, symbols, Matrix, solve
A = Matrix([[symbols(f'x{i}') for i in range(1, 4)],
[symbols(f'y{i}') for i in range(1, 4)],
[1 for _ in range(3)]]).T
for t in [A, A.det(), solve(A.det())]:
pprint(t)
print()
入出力結果(Terminal, Jupyter(IPython))
$ ./sample3.py ⎡x₁ y₁ 1⎤ ⎢ ⎥ ⎢x₂ y₂ 1⎥ ⎢ ⎥ ⎣x₃ y₃ 1⎦ x₁⋅y₂ - x₁⋅y₃ - x₂⋅y₁ + x₂⋅y₃ + x₃⋅y₁ - x₃⋅y₂ ⎡⎧ x₂⋅y₁ - x₂⋅y₃ - x₃⋅y₁ + x₃⋅y₂⎫⎤ ⎢⎨x₁: ─────────────────────────────⎬⎥ ⎣⎩ y₂ - y₃ ⎭⎦ $
HTML5
<div id="graph0"></div> <pre id="output0"></pre> <label for="r0">r = </label> <input id="r0" type="number" min="0" value="0.5"> <label for="dx">dx = </label> <input id="dx" type="number" min="0" step="0.0001" value="0.001"> <br> <label for="x1">x1 = </label> <input id="x1" type="number" value="-10"> <label for="x2">x2 = </label> <input id="x2" type="number" value="10"> <br> <label for="y1">y1 = </label> <input id="y1" type="number" value="-10"> <label for="y2">y2 = </label> <input id="y2" type="number" value="10"> <br> (<input id="a1" type="number" value="1"> , <input id="b1" type="number" value="2">) <br> (<input id="a2" type="number" value="2"> , <input id="b2" type="number" value="4">) <br> (<input id="a3" type="number" value="3"> , <input id="b3" type="number" value="6">) <button id="draw0">draw</button> <button id="clear0">clear</button> <script type="text/javascript" src="https://cdnjs.cloudflare.com/ajax/libs/d3/4.2.6/d3.min.js" integrity="sha256-5idA201uSwHAROtCops7codXJ0vja+6wbBrZdQ6ETQc=" crossorigin="anonymous"></script> <script src="sample3.js"></script>
JavaScript
let div0 = document.querySelector('#graph0'),
pre0 = document.querySelector('#output0'),
width = 600,
height = 600,
padding = 50,
btn0 = document.querySelector('#draw0'),
btn1 = document.querySelector('#clear0'),
input_r = document.querySelector('#r0'),
input_dx = document.querySelector('#dx'),
input_x1 = document.querySelector('#x1'),
input_x2 = document.querySelector('#x2'),
input_y1 = document.querySelector('#y1'),
input_y2 = document.querySelector('#y2'),
input_a1 = document.querySelector('#a1'),
input_b1 = document.querySelector('#b1'),
input_a2 = document.querySelector('#a2'),
input_b2 = document.querySelector('#b2'),
input_a3 = document.querySelector('#a3'),
input_b3 = document.querySelector('#b3'),
inputs = [input_r, input_dx, input_x1, input_x2, input_y1, input_y2,
input_a1, input_b1,input_a2, input_b2,input_a3, input_b3],
p = (x) => pre0.textContent += x + '\n',
range = (start, end, step=1) => {
let res = [];
for (let i = start; i < end; i += step) {
res.push(i);
}
return res;
};
let f = (a1, b1, a2, b2, a3, b3) =>
a1 * b2 - a1 * b3 - a2 * b1 + a2 * b3 + a3 * b1 - a3 * b2;
let draw = () => {
pre0.textContent = '';
let r = parseFloat(input_r.value),
dx = parseFloat(input_dx.value),
x1 = parseFloat(input_x1.value),
x2 = parseFloat(input_x2.value),
y1 = parseFloat(input_y1.value),
y2 = parseFloat(input_y2.value),
a1 = parseFloat(input_a1.value),
b1 = parseFloat(input_b1.value),
a2 = parseFloat(input_a2.value),
b2 = parseFloat(input_b2.value),
a3 = parseFloat(input_a3.value),
b3 = parseFloat(input_b3.value);
if (r === 0 || dx === 0 || x1 > x2 || y1 > y2) {
return;
}
let points = [],
lines = [[a1, b1, a2, b2, 'red'],
[a2, b2, a3, b3, 'green']],
fns = [],
fns1 = [],
fns2 = [];
fns
.forEach((o) => {
let [f, color] = o;
for (let x = x1; x <= x2; x += dx) {
let y = f(x);
points.push([x, y, color]);
}
});
fns2
.forEach((o) => {
let [f, color] = o;
for (let x = x1; x <= x2; x += dx0) {
let g = f(x);
lines.push([x1, g(x1), x2, g(x2), color]);
}
});
let xscale = d3.scaleLinear()
.domain([x1, x2])
.range([padding, width - padding]);
let yscale = d3.scaleLinear()
.domain([y1, y2])
.range([height - padding, padding]);
let xaxis = d3.axisBottom().scale(xscale);
let yaxis = d3.axisLeft().scale(yscale);
div0.innerHTML = '';
let svg = d3.select('#graph0')
.append('svg')
.attr('width', width)
.attr('height', height);
svg.selectAll('line')
.data([[x1, 0, x2, 0], [0, y1, 0, y2]].concat(lines))
.enter()
.append('line')
.attr('x1', (d) => xscale(d[0]))
.attr('y1', (d) => yscale(d[1]))
.attr('x2', (d) => xscale(d[2]))
.attr('y2', (d) => yscale(d[3]))
.attr('stroke', (d) => d[4] || 'black');
svg.selectAll('circle')
.data(points)
.enter()
.append('circle')
.attr('cx', (d) => xscale(d[0]))
.attr('cy', (d) => yscale(d[1]))
.attr('r', r)
.attr('fill', (d) => d[2] || 'green');
svg.append('g')
.attr('transform', `translate(0, ${height - padding})`)
.call(xaxis);
svg.append('g')
.attr('transform', `translate(${padding}, 0)`)
.call(yaxis);
[fns, fns1, fns2].forEach((fs) => p(fs.join('\n')));
p(f(a1, b1, a2, b2, a3, b3));
};
inputs.forEach((input) => input.onchange = draw);
btn0.onclick = draw;
btn1.onclick = () => pre0.textContent = '';
draw();
( , )
( , )
( , )
0 コメント:
コメントを投稿