学習環境
- Surface 3 (4G LTE)、Surface 3 タイプ カバー、Surface ペン(端末)
- Windows 10 Pro (OS)
- Nebo(Windows アプリ)
- iPad Pro + Apple Pencil
- MyScript Nebo(iPad アプリ)
- 参考書籍
解析入門 原書第3版 (S.ラング(著)、松坂 和夫(翻訳)、片山 孝次(翻訳)、岩波書店)の第2部(微分と基本的な関数)、第8章(指数関数と対数関数)、2(指数関数)、練習問題32.を取り組んでみる。
-
よって、
なので、 曲線の x が正の部分が問題の方程式によりパラメーター表示される。
コード(Emacs)
Python 3
#!/usr/bin/env python3
from sympy import pprint, symbols, cosh, sinh, Derivative, plot, sqrt, solve
import random
print('32.')
print('(a)')
t = symbols('t')
f = cosh(t)
g = sinh(t)
for h in [f, g]:
D = Derivative(h, t, 1)
for s in [D, D.doit()]:
pprint(s)
print()
print()
print('(b)')
for _ in range(10):
print((f**2 - g ** 2).subs({t: random.random() * 10}))
print('(c)')
x, y = symbols('x, y')
eq = x ** 2 - y ** 2 - 1
ys = solve(eq, y)
p = plot(*ys, show=False, legend=True)
for i, color in enumerate(['red', 'green']):
p[i].line_color = color
p.save('sample32_c.svg')
print('(d)')
ts1 = solve(f - y, t)
for t0 in ts1:
D = Derivative(t0, y, 1)
for s in [D, D.doit()]:
pprint(s)
print()
print()
p = plot(f, *[t0.subs({y: t}) for t0 in ts1],
ylim=(-10, 10), show=False, legend=True)
for i, color in enumerate(['red', 'green', 'blue']):
p[i].line_color = color
p.save('sample32_d1.svg')
ts2 = solve(g - y, t)
for t0 in ts2:
D = Derivative(t0, y, 1)
for s in [D, D.doit()]:
pprint(s)
print()
print()
p = plot(g, *[t0.subs({y: t}) for t0 in ts2],
ylim=(-10, 10), show=False, legend=True)
for i, color in enumerate(['red', 'green', 'blue']):
p[i].line_color = color
p.save('sample32_d2.svg')
入出力結果(Terminal, Jupyter(IPython))
$ ./sample32.py
32.
(a)
d
──(cosh(t))
dt
sinh(t)
d
──(sinh(t))
dt
cosh(t)
(b)
1.00000000000182
1.00000000000000
0.999999999999986
1.00000000000000
0.999999999999886
1.00000000000000
1.00000000000000
1.00000000000000
0.999999999999773
1.00000000000000
(c)
(d)
⎛ ⎛ ________⎞⎞
d ⎜ ⎜ ╱ 2 ⎟⎟
──⎝log⎝y - ╲╱ y - 1 ⎠⎠
dy
y
- ─────────── + 1
________
╱ 2
╲╱ y - 1
─────────────────
________
╱ 2
y - ╲╱ y - 1
⎛ ⎛ ________⎞⎞
d ⎜ ⎜ ╱ 2 ⎟⎟
──⎝log⎝y + ╲╱ y - 1 ⎠⎠
dy
y
─────────── + 1
________
╱ 2
╲╱ y - 1
───────────────
________
╱ 2
y + ╲╱ y - 1
⎛ ⎛ ________⎞⎞
d ⎜ ⎜ ╱ 2 ⎟⎟
──⎝log⎝y - ╲╱ y + 1 ⎠⎠
dy
y
- ─────────── + 1
________
╱ 2
╲╱ y + 1
─────────────────
________
╱ 2
y - ╲╱ y + 1
⎛ ⎛ ________⎞⎞
d ⎜ ⎜ ╱ 2 ⎟⎟
──⎝log⎝y + ╲╱ y + 1 ⎠⎠
dy
y
─────────── + 1
________
╱ 2
╲╱ y + 1
───────────────
________
╱ 2
y + ╲╱ y + 1
$
HTML5
<div id="graph0"></div> <pre id="output0"></pre> <label for="r0">r = </label> <input id="r0" type="number" min="0" value="0.5"> <label for="dx">dx = </label> <input id="dx" type="number" min="0" step="0.001" value="0.005"> <br> <label for="x1">x1 = </label> <input id="x1" type="number" value="-5"> <label for="x2">x2 = </label> <input id="x2" type="number" value="5"> <br> <label for="y1">y1 = </label> <input id="y1" type="number" value="-5"> <label for="y2">y2 = </label> <input id="y2" type="number" value="5"> <button id="draw0">draw</button> <button id="clear0">clear</button> <script type="text/javascript" src="https://cdnjs.cloudflare.com/ajax/libs/d3/4.2.6/d3.min.js" integrity="sha256-5idA201uSwHAROtCops7codXJ0vja+6wbBrZdQ6ETQc=" crossorigin="anonymous"></script> <script src="sample312js"></script>
JavaScript
let div0 = document.querySelector('#graph0'),
pre0 = document.querySelector('#output0'),
width = 600,
height = 600,
padding = 50,
btn0 = document.querySelector('#draw0'),
btn1 = document.querySelector('#clear0'),
input_r = document.querySelector('#r0'),
input_dx = document.querySelector('#dx'),
input_x1 = document.querySelector('#x1'),
input_x2 = document.querySelector('#x2'),
input_y1 = document.querySelector('#y1'),
input_y2 = document.querySelector('#y2'),
inputs = [input_r, input_dx, input_x1, input_x2, input_y1, input_y2],
p = (x) => pre0.textContent += x + '\n',
range = (start, end, step=1) => {
let res = [];
for (let i = start; i < end; i += step) {
res.push(i);
}
return res;
};
let f = (x) => Math.cosh(x),
g = (x) => Math.log((x + Math.sqrt(x ** 2 - 1)) / 2),
h = (x) => Math.log((x - Math.sqrt(x ** 2 - 1)) / 2);
let draw = () => {
pre0.textContent = '';
let r = parseFloat(input_r.value),
dx = parseFloat(input_dx.value),
x1 = parseFloat(input_x1.value),
x2 = parseFloat(input_x2.value),
y1 = parseFloat(input_y1.value),
y2 = parseFloat(input_y2.value);
if (r === 0 || dx === 0 || x1 > x2 || y1 > y2) {
return;
}
let points = [],
lines = [],
fns = [[(x) => x, 'red'],
[f, 'green'],
[g, 'blue'],
[h, 'orange']],
fns1 = [],
fns2 = [];
fns
.forEach((o) => {
let [f, color] = o;
for (let x = x1; x <= x2; x += dx) {
let y = f(x);
points.push([x, y, color]);
}
});
fns1
.forEach((o) => {
let [f, color] = o;
lines.push([x1, f(x1), x2, f(x2), color]);
});
fns2
.forEach((o) => {
let [f, color] = o;
for (let x = x1; x <= x2; x += dx0) {
let g = f(x);
lines.push([x1, g(x1), x2, g(x2), color]);
}
});
let xscale = d3.scaleLinear()
.domain([x1, x2])
.range([padding, width - padding]);
let yscale = d3.scaleLinear()
.domain([y1, y2])
.range([height - padding, padding]);
let xaxis = d3.axisBottom().scale(xscale);
let yaxis = d3.axisLeft().scale(yscale);
div0.innerHTML = '';
let svg = d3.select('#graph0')
.append('svg')
.attr('width', width)
.attr('height', height);
svg.selectAll('line')
.data([[x1, 0, x2, 0], [0, y1, 0, y2]].concat(lines))
.enter()
.append('line')
.attr('x1', (d) => xscale(d[0]))
.attr('y1', (d) => yscale(d[1]))
.attr('x2', (d) => xscale(d[2]))
.attr('y2', (d) => yscale(d[3]))
.attr('stroke', (d) => d[4] || 'black');
svg.selectAll('circle')
.data(points)
.enter()
.append('circle')
.attr('cx', (d) => xscale(d[0]))
.attr('cy', (d) => yscale(d[1]))
.attr('r', r)
.attr('fill', (d) => d[2] || 'green');
svg.append('g')
.attr('transform', `translate(0, ${height - padding})`)
.call(xaxis);
svg.append('g')
.attr('transform', `translate(${padding}, 0)`)
.call(yaxis);
[fns, fns1, fns2].forEach((fs) => p(fs.join('\n')));
};
inputs.forEach((input) => input.onchange = draw);
btn0.onclick = draw;
btn1.onclick = () => pre0.textContent = '';
draw();
0 コメント:
コメントを投稿