2017年8月20日日曜日

学習環境

数学読本〈5〉微分法の応用/積分法/積分法の応用/行列と行列式(松坂 和夫(著)、岩波書店)の第19章(細分による加法 - 積分法)、19.2(不定積分の計算)、三角関数の積分、問16.を取り組んでみる。


  1. I n = sin n1 xcosx ( n1 ) sin n2 xcosxcosxdx = sin n1 xcosx+( n1 ) sin n2 x cos 2 xdx = sin n1 xcosx+( n1 ) sin n2 x( 1 sin 2 x )dx = sin n1 xcosx+( n1 ) ( sin n2 x sin n x )dx = sin n1 xcosx+( n1 ) sin n2 xdx ( n1 ) sin n xdx = sin n1 xcosx+( n1 ) I n2 ( n1 ) I n n I n = sin n1 xcosx+( n1 ) I n2 I n = 1 n sin n1 xcosx+ n1 n I n2

コード(Emacs)

Python 3

#!/usr/bin/env python3
# -*- coding: utf-8 -*-

from sympy import pprint, symbols, Integral, sin, cos, solve, Rational

print('16.')
x = symbols('x')
n = symbols('n', positive=True, integer=True)
f = Integral(sin(x) ** n, x)

pprint(f)

for n0 in range(2, 10):
    eq1 = f.subs({n: n0})
    eq2 = Rational(- 1, n0) * sin(x) ** (n0 - 1) * cos(x) + \
        Rational(n0 - 1, n0) * f.subs({n: n0 - 2})
    pprint(eq1)
    pprint(eq2)
    print(eq1.doit() == eq2.doit())
    print()

入出力結果(Terminal, IPython)

$ ./sample16.py
16.
⌠           
⎮    n      
⎮ sin (x) dx
⌡           
⌠           
⎮    2      
⎮ sin (x) dx
⌡           
                  ⌠     
                  ⎮ 1 dx
  sin(x)⋅cos(x)   ⌡     
- ───────────── + ──────
        2           2   
True

⌠           
⎮    3      
⎮ sin (x) dx
⌡           
                     ⌠          
     2             2⋅⎮ sin(x) dx
  sin (x)⋅cos(x)     ⌡          
- ────────────── + ─────────────
        3                3      
False

⌠           
⎮    4      
⎮ sin (x) dx
⌡           
                     ⌠           
                     ⎮    2      
     3             3⋅⎮ sin (x) dx
  sin (x)⋅cos(x)     ⌡           
- ────────────── + ──────────────
        4                4       
True

⌠           
⎮    5      
⎮ sin (x) dx
⌡           
                     ⌠           
                     ⎮    3      
     4             4⋅⎮ sin (x) dx
  sin (x)⋅cos(x)     ⌡           
- ────────────── + ──────────────
        5                5       
False

⌠           
⎮    6      
⎮ sin (x) dx
⌡           
                     ⌠           
                     ⎮    4      
     5             5⋅⎮ sin (x) dx
  sin (x)⋅cos(x)     ⌡           
- ────────────── + ──────────────
        6                6       
True

⌠           
⎮    7      
⎮ sin (x) dx
⌡           
                     ⌠           
                     ⎮    5      
     6             6⋅⎮ sin (x) dx
  sin (x)⋅cos(x)     ⌡           
- ────────────── + ──────────────
        7                7       
False

⌠           
⎮    8      
⎮ sin (x) dx
⌡           
                     ⌠           
                     ⎮    6      
     7             7⋅⎮ sin (x) dx
  sin (x)⋅cos(x)     ⌡           
- ────────────── + ──────────────
        8                8       
True

⌠           
⎮    9      
⎮ sin (x) dx
⌡           
                     ⌠           
                     ⎮    7      
     8             8⋅⎮ sin (x) dx
  sin (x)⋅cos(x)     ⌡           
- ────────────── + ──────────────
        9                9       
False

$

HTML5

<div id="graph0"></div>
<pre id="output0"></pre>
<label for="r0">r = </label>
<input id="r0" type="number" min="0" value="0.5">
<label for="dx">dx = </label>
<input id="dx" type="number" min="0" step="0.0001" value="0.001">
<br>
<label for="x1">x1 = </label>
<input id="x1" type="number" value="-5">
<label for="x2">x2 = </label>
<input id="x2" type="number" value="5">
<br>
<label for="y1">y1 = </label>
<input id="y1" type="number" value="-5">
<label for="y2">y2 = </label>
<input id="y2" type="number" value="5">

<button id="draw0">draw</button>
<button id="clear0">clear</button>

<script type="text/javascript" src="https://cdnjs.cloudflare.com/ajax/libs/d3/4.2.6/d3.min.js" integrity="sha256-5idA201uSwHAROtCops7codXJ0vja+6wbBrZdQ6ETQc=" crossorigin="anonymous"></script>

<script src="sample16.js"></script>    
 

JavaScript

let div0 = document.querySelector('#graph0'),
    pre0 = document.querySelector('#output0'),
    width = 600,
    height = 600,
    padding = 50,
    btn0 = document.querySelector('#draw0'),
    btn1 = document.querySelector('#clear0'),
    input_r = document.querySelector('#r0'),
    input_dx = document.querySelector('#dx'),
    input_x1 = document.querySelector('#x1'),
    input_x2 = document.querySelector('#x2'),
    input_y1 = document.querySelector('#y1'),
    input_y2 = document.querySelector('#y2'),
    inputs = [input_r, input_dx, input_x1, input_x2, input_y1, input_y2],
    p = (x) => pre0.textContent += x + '\n',
    range = (start, end, step=1) => {
        let res = [];
        for (let i = start; i < end; i += step) {
            res.push(i);
        }
        return res;
    };

let f = (n) => (x) => Math.sin(x) ** n;

let draw = () => {
    pre0.textContent = '';

    let r = parseFloat(input_r.value),
        dx = parseFloat(input_dx.value),
        x1 = parseFloat(input_x1.value),
        x2 = parseFloat(input_x2.value),
        y1 = parseFloat(input_y1.value),
        y2 = parseFloat(input_y2.value);

    if (r === 0 || dx === 0 || x1 > x2 || y1 > y2) {
        return;
    }
    
    let points = [],
        lines = [],
        fns = ['red','green', 'blue', 'orange', 'brown', 'purple']
        .map((color, i) => [f(i), color]),
        fns1 = [],
        fns2 = [];

    fns.forEach((o) => {
        let [fn, color] = o;
        for (let x = x1; x <= x2; x += dx) {
            let y = fn(x);

            if (Math.abs(y) < Infinity) {
                points.push([x, y, color]);
            }
        }
    });
    fns1.forEach((o) => {
        let [fn, color] = o;
        
        lines.push([x1, fn(x1), x2, fn(x2), color]);
    });
    fns2.forEach((o) => {
        let [fn, color] = o;

        for (let x = x1; x <= x2; x += dx0) {
            let g = fn(x);
            
            lines.push([x1, g(x1), x2, g(x2), color]);
        }        
    });
    let xscale = d3.scaleLinear()
        .domain([x1, x2])
        .range([padding, width - padding]);
    let yscale = d3.scaleLinear()
        .domain([y1, y2])
        .range([height - padding, padding]);

    let xaxis = d3.axisBottom().scale(xscale);
    let yaxis = d3.axisLeft().scale(yscale);
    div0.innerHTML = '';
    let svg = d3.select('#graph0')
        .append('svg')
        .attr('width', width)
        .attr('height', height);

    svg.selectAll('line')
        .data([[x1, 0, x2, 0], [0, y1, 0, y2]].concat(lines))
        .enter()
        .append('line')
        .attr('x1', (d) => xscale(d[0]))
        .attr('y1', (d) => yscale(d[1]))
        .attr('x2', (d) => xscale(d[2]))
        .attr('y2', (d) => yscale(d[3]))
        .attr('stroke', (d) => d[4] || 'black');
    
    svg.selectAll('circle')
        .data(points)
        .enter()
        .append('circle')
        .attr('cx', (d) => xscale(d[0]))
        .attr('cy', (d) => yscale(d[1]))
        .attr('r', r)
        .attr('fill', (d) => d[2] || 'green');
    
    svg.append('g')
        .attr('transform', `translate(0, ${height - padding})`)
        .call(xaxis);

    svg.append('g')
        .attr('transform', `translate(${padding}, 0)`)
        .call(yaxis);

    [fns, fns1, fns2].forEach((fs) => p(fs.join('\n')));
};

inputs.forEach((input) => input.onchange = draw);
btn0.onclick = draw;
btn1.onclick = () => pre0.textContent = '';
draw();







0 コメント:

コメントを投稿