2017年8月27日日曜日

学習環境

数学読本〈5〉微分法の応用/積分法/積分法の応用/行列と行列式(松坂 和夫(著)、岩波書店)の第19章(細分による加法 - 積分法)、19.3(定積分の性質と計算)、簡単な例、問22.を取り組んでみる。


    1. x 2 1=0 x=±1 0 1 ( 1 x 2 )dx+ 1 3 ( x 2 1 )dx = [ x 1 3 x 3 ] 0 1 + [ 1 3 x 3 x ] 1 3 =1 1 3 +93( 1 3 1 ) =8 2 3 = 22 3

    2. 1 1 | x |dx 1 1 | x1 |dx =2 0 1 xdx + 1 1 ( x1 )dx =2 [ 1 2 x 2 ] 0 1 + 1 1 xdx 1 1 1dx =2· 1 2 +02 =1

    3. x x 2 =x( x1 ) 1 0 ( x x 2 )dx + 0 1 ( x x 2 )dx 1 2 ( x x 2 )dx = [ 1 2 x 2 1 3 x 3 ] 1 0 + [ 1 2 x 2 1 3 x 3 ] 0 1 [ 1 2 x 2 1 3 x 3 ] 1 2 = 1 2 + 1 3 + 1 2 1 3 ( 2 8 3 ( 1 2 1 3 ) ) =1+ 7 3 + 1 2 = 11 6

    4. x 2=0 x=4 1 4 ( x 2 )dx + 4 9 ( x 2 )dx = [ 2 3 x 3 2 2x ] 1 4 + [ 2 3 x 3 2 2x ] 4 9 =( ( 2 3 · 2 3 8 )( 2 3 2 ) )+( ( 2 3 · 3 3 18 )( 2 3 · 2 3 8 ) ) =( 16 3 8+ 4 3 )( 16 3 8 ) = 36 3 +16 =12+16 =4

    5. 0xπ 02x2π 2x=π x= π 2 0 π 2 sin2xdx π 2 π sin2xdx = [ 1 2 cos2x ] 0 π 2 + [ 1 2 cos2x ] π 2 π = 1 2 ( cosπcos0 )+ 1 2 ( cos2πcosπ ) = 1 2 ( 11 )+ 1 2 ( 1+1 ) =1+1 =2

    6. e x =2 log e x =log2 xloge=log2 x=log2 0<log2<1 0 log2 ( 2 e x )dx + log2 1 ( e x 2 )dx = [ 2x e x ] 0 log2 + [ e x 2x ] log2 1 =2log2 e log2 ( 1 )+e2( e log2 2log2 ) =4log22+1+e22 =4log2+e5

コード(Emacs)

Python 3

#!/usr/bin/env python3
# -*- coding: utf-8 -*-

from sympy import pprint, symbols, Integral, plot, Abs, sqrt, sin, pi, exp

print('22.')
x = symbols('x')
# (4) は計算が終了しなかったから省略
fs = [(Abs(x ** 2 - 1), (0, 3)),
      (Abs(x) - Abs(x - 1), (-1, 1)),
      (Abs(x - x ** 2), (-1, 2)),
      # (Abs(sqrt(x) - 2), (1, 9)),
      (Abs(sin(2 * x)), (0, pi)),
      (Abs(exp(x) - 2), (0, 1))]

# 積分の値を求められないのは、SymPy の問題か、やり方が違うからか分からず。
for i, (f, (x1, x2)) in enumerate(fs, 1):
    print(f'({i})')
    I = Integral(f, (x, x1, x2))
    for o in [I, I.doit()]:
        pprint(o)
    try:
        p = plot(f, show=False, legend=True)
        p.save(f'sample22_{i}.svg')
    except Exception as err:
        print(type(err), err)
    print()

入出力結果(Terminal, IPython)

$ ./sample22.py
22.
(1)
3            
⌠            
⎮ │ 2    │   
⎮ │x  - 1│ dx
⌡            
0            
3            
⌠            
⎮ │ 2    │   
⎮ │x  - 1│ dx
⌡            
0            

(2)
1                    
⌠                    
⎮  (│x│ - │x - 1│) dx
⌡                    
-1                   
1                    
⌠                    
⎮  (│x│ - │x - 1│) dx
⌡                    
-1                   

(3)
2             
⌠             
⎮  │ 2    │   
⎮  │x  - x│ dx
⌡             
-1            
2             
⌠             
⎮  │ 2    │   
⎮  │x  - x│ dx
⌡             
-1            

(4)
π              
⌠              
⎮ │sin(2⋅x)│ dx
⌡              
0              
π              
⌠              
⎮ │sin(2⋅x)│ dx
⌡              
0              

(5)
1            
⌠            
⎮ │ x    │   
⎮ │ℯ  - 2│ dx
⌡            
0            
1            
⌠            
⎮ │ x    │   
⎮ │ℯ  - 2│ dx
⌡            
0            

$

HTML5

<div id="graph0"></div>
<pre id="output0"></pre>
<label for="r0">r = </label>
<input id="r0" type="number" min="0" value="0.5">
<label for="dx">dx = </label>
<input id="dx" type="number" min="0" step="0.0001" value="0.001">
<br>
<label for="x1">x1 = </label>
<input id="x1" type="number" value="-10">
<label for="x2">x2 = </label>
<input id="x2" type="number" value="10">
<br>
<label for="y1">y1 = </label>
<input id="y1" type="number" value="-10">
<label for="y2">y2 = </label>
<input id="y2" type="number" value="10">

<button id="draw0">draw</button>
<button id="clear0">clear</button>

<script type="text/javascript" src="https://cdnjs.cloudflare.com/ajax/libs/d3/4.2.6/d3.min.js" integrity="sha256-5idA201uSwHAROtCops7codXJ0vja+6wbBrZdQ6ETQc=" crossorigin="anonymous"></script>

<script src="sample22.js"></script>    
 

JavaScript

let div0 = document.querySelector('#graph0'),
    pre0 = document.querySelector('#output0'),
    width = 600,
    height = 600,
    padding = 50,
    btn0 = document.querySelector('#draw0'),
    btn1 = document.querySelector('#clear0'),
    input_r = document.querySelector('#r0'),
    input_dx = document.querySelector('#dx'),
    input_x1 = document.querySelector('#x1'),
    input_x2 = document.querySelector('#x2'),
    input_y1 = document.querySelector('#y1'),
    input_y2 = document.querySelector('#y2'),
    inputs = [input_r, input_dx, input_x1, input_x2, input_y1, input_y2],
    p = (x) => pre0.textContent += x + '\n',
    range = (start, end, step=1) => {
        let res = [];
        for (let i = start; i < end; i += step) {
            res.push(i);
        }
        return res;
    };

let f4 = (x) => Math.abs(Math.sqrt(x) - 2),
    f41 = (x) => Math.sqrt(x) - 2;

let draw = () => {
    pre0.textContent = '';

    let r = parseFloat(input_r.value),
        dx = parseFloat(input_dx.value),
        x1 = parseFloat(input_x1.value),
        x2 = parseFloat(input_x2.value),
        y1 = parseFloat(input_y1.value),
        y2 = parseFloat(input_y2.value);

    if (r === 0 || dx === 0 || x1 > x2 || y1 > y2) {
        return;
    }
    
    let points = [],
        lines = [[1, y1, 1, y2, 'red'],
                 [9, y1, 9, y2, 'red']],
        fns = [[f41, 'blue'],
               [f4, 'green']],
        fns1 = [],
        fns2 = [];

    fns.forEach((o) => {
        let [fn, color] = o;
        for (let x = x1; x <= x2; x += dx) {
            let y = fn(x);

            if (Math.abs(y) < Infinity) {
                points.push([x, y, color]);
            }
        }
    });
    fns1.forEach((o) => {
        let [fn, color] = o;
        
        lines.push([x1, fn(x1), x2, fn(x2), color]);
    });
    fns2.forEach((o) => {
        let [fn, color] = o;

        for (let x = x1; x <= x2; x += dx0) {
            let g = fn(x);
            
            lines.push([x1, g(x1), x2, g(x2), color]);
        }        
    });
    let xscale = d3.scaleLinear()
        .domain([x1, x2])
        .range([padding, width - padding]);
    let yscale = d3.scaleLinear()
        .domain([y1, y2])
        .range([height - padding, padding]);

    let xaxis = d3.axisBottom().scale(xscale);
    let yaxis = d3.axisLeft().scale(yscale);
    div0.innerHTML = '';
    let svg = d3.select('#graph0')
        .append('svg')
        .attr('width', width)
        .attr('height', height);

    svg.selectAll('line')
        .data([[x1, 0, x2, 0], [0, y1, 0, y2]].concat(lines))
        .enter()
        .append('line')
        .attr('x1', (d) => xscale(d[0]))
        .attr('y1', (d) => yscale(d[1]))
        .attr('x2', (d) => xscale(d[2]))
        .attr('y2', (d) => yscale(d[3]))
        .attr('stroke', (d) => d[4] || 'black');
    
    svg.selectAll('circle')
        .data(points)
        .enter()
        .append('circle')
        .attr('cx', (d) => xscale(d[0]))
        .attr('cy', (d) => yscale(d[1]))
        .attr('r', r)
        .attr('fill', (d) => d[2] || 'green');
    
    svg.append('g')
        .attr('transform', `translate(0, ${height - padding})`)
        .call(xaxis);

    svg.append('g')
        .attr('transform', `translate(${padding}, 0)`)
        .call(yaxis);

    [fns, fns1, fns2].forEach((fs) => p(fs.join('\n')));
};

inputs.forEach((input) => input.onchange = draw);
btn0.onclick = draw;
btn1.onclick = () => pre0.textContent = '';
draw();







0 コメント:

コメントを投稿