学習環境
- Surface 3 (4G LTE)、Surface 3 タイプ カバー、Surface ペン(端末)
- Windows 10 Pro (OS)
- 数式入力ソフト(TeX, MathML): MathType
- MathML対応ブラウザ: Firefox、Safari
- MathML非対応ブラウザ(Internet Explorer, Microsoft Edge, Google Chrome...)用JavaScript Library: MathJax
- 参考書籍
数学読本〈5〉微分法の応用/積分法/積分法の応用/行列と行列式(松坂 和夫(著)、岩波書店)の第18章(曲線の性質、最大・最小 - 微分法の応用)、18.4(媒介変数で表される曲線)、媒介変数で表された関数の微分法、問46、47.を取り組んでみる。
コード(Emacs)
Python 3
#!/usr/bin/env python3
# -*- coding: utf-8 -*-
from sympy import pprint, symbols, Derivative, Rational, sin, cos, pi
import random
print('46.')
t = symbols('t')
x = t ** 2
y = t ** 3
pprint(x)
pprint(y)
m = Derivative(y, t, 1) / Derivative(x, t, 1)
pprint(m)
m = m.doit()
pprint(m)
ts = [1, -2, Rational(1, 2)]
for i, t0 in enumerate(ts, 1):
print(f'({i})')
f = (m * (symbols('x') - x) + y).subs({t: t0})
pprint(f)
print()
print('47.')
a = symbols('a')
Θ = symbols('Θ')
x = a * (Θ - sin(Θ))
y = a * (1 - cos(Θ))
pprint(x)
pprint(y)
m = Derivative(y, Θ, 1) / Derivative(x, Θ, 1)
pprint(m)
m = m.doit()
pprint(m)
Θs = [pi / 3, pi, 5 / 4 * pi]
for i, Θ0 in enumerate(Θs, 1):
print(f'({i})')
f = (m * (symbols('x') - x) + y).subs({Θ: Θ0})
pprint(f)
print()
入出力結果(Terminal, IPython)
$ ./sample46.py
46.
2
t
3
t
d ⎛ 3⎞
──⎝t ⎠
dt
──────
d ⎛ 2⎞
──⎝t ⎠
dt
3⋅t
───
2
(1)
3⋅x 1
─── - ─
2 2
(2)
-3⋅x + 4
(3)
3⋅x 1
─── - ──
4 16
47.
a⋅(Θ - sin(Θ))
a⋅(-cos(Θ) + 1)
∂
──(a⋅(-cos(Θ) + 1))
∂Θ
───────────────────
∂
──(a⋅(Θ - sin(Θ)))
∂Θ
sin(Θ)
───────────
-cos(Θ) + 1
(1)
a ⎛ ⎛ √3 π⎞ ⎞
─ + √3⋅⎜- a⋅⎜- ── + ─⎟ + x⎟
2 ⎝ ⎝ 2 3⎠ ⎠
(2)
2⋅a
(3)
⎛ ⎛√2 ⎞ ⎞
√2⋅⎜- a⋅⎜── + 1.25⋅π⎟ + x⎟
⎛√2 ⎞ ⎝ ⎝2 ⎠ ⎠
a⋅⎜── + 1⎟ - ──────────────────────────
⎝2 ⎠ ⎛√2 ⎞
2⋅⎜── + 1⎟
⎝2 ⎠
$
HTML5
<div id="graph0"></div> <pre id="output0"></pre> <label for="r0">r = </label> <input id="r0" type="number" min="0" value="0.5"> <label for="dx">dx = </label> <input id="dx" type="number" min="0" step="0.0001" value="0.001"> <br> <label for="x1">x1 = </label> <input id="x1" type="number" value="-10"> <label for="x2">x2 = </label> <input id="x2" type="number" value="10"> <br> <label for="y1">y1 = </label> <input id="y1" type="number" value="-10"> <label for="y2">y2 = </label> <input id="y2" type="number" value="10"> <button id="draw0">draw</button> <button id="clear0">clear</button> <script type="text/javascript" src="https://cdnjs.cloudflare.com/ajax/libs/d3/4.2.6/d3.min.js" integrity="sha256-5idA201uSwHAROtCops7codXJ0vja+6wbBrZdQ6ETQc=" crossorigin="anonymous"></script> <script src="sample46.js"></script>
JavaScript
let div0 = document.querySelector('#graph0'),
pre0 = document.querySelector('#output0'),
width = 600,
height = 600,
padding = 50,
btn0 = document.querySelector('#draw0'),
btn1 = document.querySelector('#clear0'),
input_r = document.querySelector('#r0'),
input_dx = document.querySelector('#dx'),
input_x1 = document.querySelector('#x1'),
input_x2 = document.querySelector('#x2'),
input_y1 = document.querySelector('#y1'),
input_y2 = document.querySelector('#y2'),
inputs = [input_r, input_dx, input_x1, input_x2, input_y1, input_y2],
p = (x) => pre0.textContent += x + '\n',
range = (start, end, step=1) => {
let res = [];
for (let i = start; i < end; i += step) {
res.push(i);
}
return res;
};
let fx = (t) => t ** 2,
fy = (t) => t ** 3;
let draw = () => {
pre0.textContent = '';
let r = parseFloat(input_r.value),
dx = parseFloat(input_dx.value),
x1 = parseFloat(input_x1.value),
x2 = parseFloat(input_x2.value),
y1 = parseFloat(input_y1.value),
y2 = parseFloat(input_y2.value);
if (r === 0 || dx === 0 || x1 > x2 || y1 > y2) {
return;
}
let points = [],
lines = [],
fns = [],
fns1 = [],
fns2 = [];
for (let x = x1; x <= x2; x += dx) {
let x0 = fx(x),
y0 = fy(x);
if (Math.abs(x0) < Infinity && Math.abs(y0) < Infinity) {
points.push([x0, y0, 'green']);
}
}
fns.forEach((o) => {
let [fn, color] = o;
for (let x = x1; x <= x2; x += dx) {
let y = fn(x);
if (Math.abs(y) < Infinity) {
points.push([x, y, color]);
}
}
});
fns1.forEach((o) => {
let [fn, color] = o;
lines.push([x1, fn(x1), x2, fn(x2), color]);
});
fns2.forEach((o) => {
let [fn, color] = o;
for (let x = x1; x <= x2; x += dx0) {
let g = fn(x);
lines.push([x1, g(x1), x2, g(x2), color]);
}
});
let xscale = d3.scaleLinear()
.domain([x1, x2])
.range([padding, width - padding]);
let yscale = d3.scaleLinear()
.domain([y1, y2])
.range([height - padding, padding]);
let xaxis = d3.axisBottom().scale(xscale);
let yaxis = d3.axisLeft().scale(yscale);
div0.innerHTML = '';
let svg = d3.select('#graph0')
.append('svg')
.attr('width', width)
.attr('height', height);
svg.selectAll('line')
.data([[x1, 0, x2, 0], [0, y1, 0, y2]].concat(lines))
.enter()
.append('line')
.attr('x1', (d) => xscale(d[0]))
.attr('y1', (d) => yscale(d[1]))
.attr('x2', (d) => xscale(d[2]))
.attr('y2', (d) => yscale(d[3]))
.attr('stroke', (d) => d[4] || 'black');
svg.selectAll('circle')
.data(points)
.enter()
.append('circle')
.attr('cx', (d) => xscale(d[0]))
.attr('cy', (d) => yscale(d[1]))
.attr('r', r)
.attr('fill', (d) => d[2] || 'green');
svg.append('g')
.attr('transform', `translate(0, ${height - padding})`)
.call(xaxis);
svg.append('g')
.attr('transform', `translate(${padding}, 0)`)
.call(yaxis);
[fns, fns1, fns2].forEach((fs) => p(fs.join('\n')));
};
inputs.forEach((input) => input.onchange = draw);
btn0.onclick = draw;
btn1.onclick = () => pre0.textContent = '';
draw();
0 コメント:
コメントを投稿