学習環境
- Surface 3 (4G LTE)、Surface 3 タイプ カバー、Surface ペン(端末)
- Windows 10 Pro (OS)
- 数式入力ソフト(TeX, MathML): MathType
- MathML対応ブラウザ: Firefox、Safari
- MathML非対応ブラウザ(Internet Explorer, Microsoft Edge, Google Chrome...)用JavaScript Library: MathJax
- 参考書籍
数学読本〈5〉微分法の応用/積分法/積分法の応用/行列と行列式(松坂 和夫(著)、岩波書店)の第18章(曲線の性質、最大・最小 - 微分法の応用)、18.4(媒介変数で表される曲線)、媒介変数で表された関数の微分法、問46、47.を取り組んでみる。
コード(Emacs)
Python 3
#!/usr/bin/env python3 # -*- coding: utf-8 -*- from sympy import pprint, symbols, Derivative, Rational, sin, cos, pi import random print('46.') t = symbols('t') x = t ** 2 y = t ** 3 pprint(x) pprint(y) m = Derivative(y, t, 1) / Derivative(x, t, 1) pprint(m) m = m.doit() pprint(m) ts = [1, -2, Rational(1, 2)] for i, t0 in enumerate(ts, 1): print(f'({i})') f = (m * (symbols('x') - x) + y).subs({t: t0}) pprint(f) print() print('47.') a = symbols('a') Θ = symbols('Θ') x = a * (Θ - sin(Θ)) y = a * (1 - cos(Θ)) pprint(x) pprint(y) m = Derivative(y, Θ, 1) / Derivative(x, Θ, 1) pprint(m) m = m.doit() pprint(m) Θs = [pi / 3, pi, 5 / 4 * pi] for i, Θ0 in enumerate(Θs, 1): print(f'({i})') f = (m * (symbols('x') - x) + y).subs({Θ: Θ0}) pprint(f) print()
入出力結果(Terminal, IPython)
$ ./sample46.py 46. 2 t 3 t d ⎛ 3⎞ ──⎝t ⎠ dt ────── d ⎛ 2⎞ ──⎝t ⎠ dt 3⋅t ─── 2 (1) 3⋅x 1 ─── - ─ 2 2 (2) -3⋅x + 4 (3) 3⋅x 1 ─── - ── 4 16 47. a⋅(Θ - sin(Θ)) a⋅(-cos(Θ) + 1) ∂ ──(a⋅(-cos(Θ) + 1)) ∂Θ ─────────────────── ∂ ──(a⋅(Θ - sin(Θ))) ∂Θ sin(Θ) ─────────── -cos(Θ) + 1 (1) a ⎛ ⎛ √3 π⎞ ⎞ ─ + √3⋅⎜- a⋅⎜- ── + ─⎟ + x⎟ 2 ⎝ ⎝ 2 3⎠ ⎠ (2) 2⋅a (3) ⎛ ⎛√2 ⎞ ⎞ √2⋅⎜- a⋅⎜── + 1.25⋅π⎟ + x⎟ ⎛√2 ⎞ ⎝ ⎝2 ⎠ ⎠ a⋅⎜── + 1⎟ - ────────────────────────── ⎝2 ⎠ ⎛√2 ⎞ 2⋅⎜── + 1⎟ ⎝2 ⎠ $
HTML5
<div id="graph0"></div> <pre id="output0"></pre> <label for="r0">r = </label> <input id="r0" type="number" min="0" value="0.5"> <label for="dx">dx = </label> <input id="dx" type="number" min="0" step="0.0001" value="0.001"> <br> <label for="x1">x1 = </label> <input id="x1" type="number" value="-10"> <label for="x2">x2 = </label> <input id="x2" type="number" value="10"> <br> <label for="y1">y1 = </label> <input id="y1" type="number" value="-10"> <label for="y2">y2 = </label> <input id="y2" type="number" value="10"> <button id="draw0">draw</button> <button id="clear0">clear</button> <script type="text/javascript" src="https://cdnjs.cloudflare.com/ajax/libs/d3/4.2.6/d3.min.js" integrity="sha256-5idA201uSwHAROtCops7codXJ0vja+6wbBrZdQ6ETQc=" crossorigin="anonymous"></script> <script src="sample46.js"></script>
JavaScript
let div0 = document.querySelector('#graph0'), pre0 = document.querySelector('#output0'), width = 600, height = 600, padding = 50, btn0 = document.querySelector('#draw0'), btn1 = document.querySelector('#clear0'), input_r = document.querySelector('#r0'), input_dx = document.querySelector('#dx'), input_x1 = document.querySelector('#x1'), input_x2 = document.querySelector('#x2'), input_y1 = document.querySelector('#y1'), input_y2 = document.querySelector('#y2'), inputs = [input_r, input_dx, input_x1, input_x2, input_y1, input_y2], p = (x) => pre0.textContent += x + '\n', range = (start, end, step=1) => { let res = []; for (let i = start; i < end; i += step) { res.push(i); } return res; }; let fx = (t) => t ** 2, fy = (t) => t ** 3; let draw = () => { pre0.textContent = ''; let r = parseFloat(input_r.value), dx = parseFloat(input_dx.value), x1 = parseFloat(input_x1.value), x2 = parseFloat(input_x2.value), y1 = parseFloat(input_y1.value), y2 = parseFloat(input_y2.value); if (r === 0 || dx === 0 || x1 > x2 || y1 > y2) { return; } let points = [], lines = [], fns = [], fns1 = [], fns2 = []; for (let x = x1; x <= x2; x += dx) { let x0 = fx(x), y0 = fy(x); if (Math.abs(x0) < Infinity && Math.abs(y0) < Infinity) { points.push([x0, y0, 'green']); } } fns.forEach((o) => { let [fn, color] = o; for (let x = x1; x <= x2; x += dx) { let y = fn(x); if (Math.abs(y) < Infinity) { points.push([x, y, color]); } } }); fns1.forEach((o) => { let [fn, color] = o; lines.push([x1, fn(x1), x2, fn(x2), color]); }); fns2.forEach((o) => { let [fn, color] = o; for (let x = x1; x <= x2; x += dx0) { let g = fn(x); lines.push([x1, g(x1), x2, g(x2), color]); } }); let xscale = d3.scaleLinear() .domain([x1, x2]) .range([padding, width - padding]); let yscale = d3.scaleLinear() .domain([y1, y2]) .range([height - padding, padding]); let xaxis = d3.axisBottom().scale(xscale); let yaxis = d3.axisLeft().scale(yscale); div0.innerHTML = ''; let svg = d3.select('#graph0') .append('svg') .attr('width', width) .attr('height', height); svg.selectAll('line') .data([[x1, 0, x2, 0], [0, y1, 0, y2]].concat(lines)) .enter() .append('line') .attr('x1', (d) => xscale(d[0])) .attr('y1', (d) => yscale(d[1])) .attr('x2', (d) => xscale(d[2])) .attr('y2', (d) => yscale(d[3])) .attr('stroke', (d) => d[4] || 'black'); svg.selectAll('circle') .data(points) .enter() .append('circle') .attr('cx', (d) => xscale(d[0])) .attr('cy', (d) => yscale(d[1])) .attr('r', r) .attr('fill', (d) => d[2] || 'green'); svg.append('g') .attr('transform', `translate(0, ${height - padding})`) .call(xaxis); svg.append('g') .attr('transform', `translate(${padding}, 0)`) .call(yaxis); [fns, fns1, fns2].forEach((fs) => p(fs.join('\n'))); }; inputs.forEach((input) => input.onchange = draw); btn0.onclick = draw; btn1.onclick = () => pre0.textContent = ''; draw();
0 コメント:
コメントを投稿