2017年7月13日木曜日

学習環境

解析入門 原書第3版 (S.ラング(著)、松坂 和夫(翻訳)、片山 孝次(翻訳)、岩波書店)の第2部(微分と基本的な関数)、第6章(曲線をえがくこと)、1(xが大きくなるときの様子)、練習問題11-18.を取り組んでみる。


  1. lim x f( x )= lim x f( x )=

  2. lim x f( x )= lim x f( x )=

  3. lim x f( x )= lim x f( x )=

  4. lim x f( x )= lim x f( x )=

  5. lim x f( x )= lim x f( x )=

  6. lim x f( x )= lim x f( x )=

  7. lim x f( x )= lim x f( x )=

  8. lim x f( x )= lim x f( x )=

コード(Emacs)

Python 3

#!/usr/bin/env python3
# -*- coding: utf-8 -*-

from sympy import pprint, symbols, Limit, S, sin, cos, pi

x = symbols('x')

qs = [x ** 3 - x + 1,
      - x ** 3 - x + 1,
      x ** 4 + 3 * x ** 3 + 2,
      - x ** 4 + 3 * x ** 3 + 2,
      2 * x ** 5 + x ** 2 - 100,
      -3 * x ** 5 + x + 1000,
      10 * x ** 6 - x ** 4,
      -3 * x ** 6 + x ** 3 + 1]

for i, q in enumerate(qs, 11):
    print(f'{i}.')
    for x0 in [S.Infinity, -S.Infinity]:
        f = Limit(q, x, x0)
        pprint(f)
        pprint(f.doit())
    print()

入出力結果(Terminal, IPython)

$ ./sample11.py
11.
    ⎛ 3        ⎞
lim ⎝x  - x + 1⎠
x─→∞            
∞
     ⎛ 3        ⎞
 lim ⎝x  - x + 1⎠
x─→-∞            
-∞

12.
    ⎛   3        ⎞
lim ⎝- x  - x + 1⎠
x─→∞              
-∞
     ⎛   3        ⎞
 lim ⎝- x  - x + 1⎠
x─→-∞              
∞

13.
    ⎛ 4      3    ⎞
lim ⎝x  + 3⋅x  + 2⎠
x─→∞               
∞
     ⎛ 4      3    ⎞
 lim ⎝x  + 3⋅x  + 2⎠
x─→-∞               
∞

14.
    ⎛   4      3    ⎞
lim ⎝- x  + 3⋅x  + 2⎠
x─→∞                 
-∞
     ⎛   4      3    ⎞
 lim ⎝- x  + 3⋅x  + 2⎠
x─→-∞                 
-∞

15.
    ⎛   5    2      ⎞
lim ⎝2⋅x  + x  - 100⎠
x─→∞                 
∞
     ⎛   5    2      ⎞
 lim ⎝2⋅x  + x  - 100⎠
x─→-∞                 
-∞

16.
    ⎛     5           ⎞
lim ⎝- 3⋅x  + x + 1000⎠
x─→∞                   
-∞
     ⎛     5           ⎞
 lim ⎝- 3⋅x  + x + 1000⎠
x─→-∞                   
∞

17.
    ⎛    6    4⎞
lim ⎝10⋅x  - x ⎠
x─→∞            
∞
     ⎛    6    4⎞
 lim ⎝10⋅x  - x ⎠
x─→-∞            
∞

18.
    ⎛     6    3    ⎞
lim ⎝- 3⋅x  + x  + 1⎠
x─→∞                 
-∞
     ⎛     6    3    ⎞
 lim ⎝- 3⋅x  + x  + 1⎠
x─→-∞                 
-∞

$

HTML5

<div id="graph0"></div>
<pre id="output0"></pre>
<label for="r0">r = </label>
<input id="r0" type="number" min="0" value="0.5">
<label for="dx">dx = </label>
<input id="dx" type="number" min="0" step="0.0001" value="0.001">
<br>
<label for="x1">x1 = </label>
<input id="x1" type="number" value="-2">
<label for="x2">x2 = </label>
<input id="x2" type="number" value="2">
<br>
<label for="y1">y1 = </label>
<input id="y1" type="number" value="-2">
<label for="y2">y2 = </label>
<input id="y2" type="number" value="2">

<button id="draw0">draw</button>
<button id="clear0">clear</button>

<script type="text/javascript" src="https://cdnjs.cloudflare.com/ajax/libs/d3/4.2.6/d3.min.js" integrity="sha256-5idA201uSwHAROtCops7codXJ0vja+6wbBrZdQ6ETQc=" crossorigin="anonymous"></script>

<script src="sample11.js"></script>    

JavaScript

let div0 = document.querySelector('#graph0'),
    pre0 = document.querySelector('#output0'),
    width = 600,
    height = 600,
    padding = 50,
    btn0 = document.querySelector('#draw0'),
    btn1 = document.querySelector('#clear0'),
    input_r = document.querySelector('#r0'),
    input_dx = document.querySelector('#dx'),
    input_x1 = document.querySelector('#x1'),
    input_x2 = document.querySelector('#x2'),
    input_y1 = document.querySelector('#y1'),
    input_y2 = document.querySelector('#y2'),
    inputs = [input_r, input_dx, input_x1, input_x2, input_y1, input_y2],
    p = (x) => pre0.textContent += x + '\n',
    range = (start, end, step=1) => {
        let res = [];
        for (let i = start; i < end; i += step) {
            res.push(i);
        }
        return res;
    };

let draw = () => {
    pre0.textContent = '';

    let r = parseFloat(input_r.value),
        dx = parseFloat(input_dx.value),
        x1 = parseFloat(input_x1.value),
        x2 = parseFloat(input_x2.value),
        y1 = parseFloat(input_y1.value),
        y2 = parseFloat(input_y2.value);

    if (r === 0 || dx === 0 || x1 > x2 || y1 > y2) {
        return;
    }    

    let points = [],
        lines = [],
        fns = ['red', 'green', 'blue', 'brown']
        .map((color, i) => [(x) => x ** (i + 3), color]),
        fns1 = [],
        fns2 = [];

    fns
        .forEach((o) => {
            let [f, color] = o;
            for (let x = x1; x <= x2; x += dx) {
                let y = f(x);

                if (Math.abs(y) < Infinity) {
                    points.push([x, y, color]);
                }
            }
        });                 

    fns2
        .forEach((o) => {
            let [f, color] = o;

            for (let x = x1; x <= x2; x += dx0) {
                let g = f(x);
                lines.push([x1, g(x1), x2, g(x2), color]);
            }
        });
    
    let xscale = d3.scaleLinear()
        .domain([x1, x2])
        .range([padding, width - padding]);
    let yscale = d3.scaleLinear()
        .domain([y1, y2])
        .range([height - padding, padding]);

    let xaxis = d3.axisBottom().scale(xscale);
    let yaxis = d3.axisLeft().scale(yscale);
    div0.innerHTML = '';
    let svg = d3.select('#graph0')
        .append('svg')
        .attr('width', width)
        .attr('height', height);

    svg.selectAll('line')
        .data([[x1, 0, x2, 0], [0, y1, 0, y2]].concat(lines))
        .enter()
        .append('line')
        .attr('x1', (d) => xscale(d[0]))
        .attr('y1', (d) => yscale(d[1]))
        .attr('x2', (d) => xscale(d[2]))
        .attr('y2', (d) => yscale(d[3]))
        .attr('stroke', (d) => d[4] || 'black');

    svg.selectAll('circle')
        .data(points)
        .enter()
        .append('circle')
        .attr('cx', (d) => xscale(d[0]))
        .attr('cy', (d) => yscale(d[1]))
        .attr('r', r)
        .attr('fill', (d) => d[2] || 'green');

    svg.append('g')
        .attr('transform', `translate(0, ${height - padding})`)
        .call(xaxis);

    svg.append('g')
        .attr('transform', `translate(${padding}, 0)`)
        .call(yaxis);

    [fns, fns1, fns2].forEach((fs) => p(fs.join('\n')));
};

inputs.forEach((input) => input.onchange = draw);
btn0.onclick = draw;
btn1.onclick = () => pre0.textContent = '';
draw();







0 コメント:

コメントを投稿