学習環境
- Surface 3 (4G LTE)、Surface 3 タイプ カバー、Surface ペン(端末)
- Windows 10 Pro (OS)
- 数式入力ソフト(TeX, MathML): MathType
- MathML対応ブラウザ: Firefox、Safari
- MathML非対応ブラウザ(Internet Explorer, Google Chrome...)用JavaScript Library: MathJax
- 参考書籍
数学読本〈5〉微分法の応用/積分法/積分法の応用/行列と行列式(松坂 和夫(著)、岩波書店)の第18章(曲線の性質、最大・最小 - 微分法の応用)、18.3(曲線の凹凸、曲線をえがくこと)、第2次導関数の符号と凹凸、問33、34、35.を取り組んでみる。
コード(Emacs)
Python 3
#!/usr/bin/env python3
# -*- coding: utf-8 -*-
from sympy import pprint, symbols, tan, Derivative, solve, plot
print('33.')
x = symbols('x')
fs = [-x ** 3 + 3 * x ** 2,
(x ** 2 - 1) ** 2,
tan(x)]
for i, f in enumerate(fs, 1):
print('({0})'.format(i))
d = Derivative(f, x, 2)
pprint(d)
f2 = d.doit()
pprint(f2)
s = solve(f2, x)
pprint(s)
for x0 in s:
pprint(x0)
pprint(f.subs({x: x0}))
print()
print()
p = plot(f, show=False, legend=True)
p.save('sample33_{0}.svg'.format(i))
print('34.')
a = symbols('a', nonzero=True)
b, c, d = symbols('b c d')
f = a * x ** 3 + b * x ** 2 + c * x + d
d = Derivative(f, x, 2)
pprint(d)
f2 = d.doit()
pprint(f2)
s = solve(f2, x)
pprint(s)
for x0 in s:
pprint(x)
pprint(f.subs({x: x0}))
入出力結果(Terminal, IPython)
$ ./sample33.py
33.
(1)
2
d ⎛ 3 2⎞
───⎝- x + 3⋅x ⎠
2
dx
6⋅(-x + 1)
[1]
1
2
(2)
2⎛ 2⎞
d ⎜⎛ 2 ⎞ ⎟
───⎝⎝x - 1⎠ ⎠
2
dx
⎛ 2 ⎞
4⋅⎝3⋅x - 1⎠
⎡-√3 √3⎤
⎢────, ──⎥
⎣ 3 3 ⎦
-√3
────
3
4/9
√3
──
3
4/9
(3)
2
d
───(tan(x))
2
dx
⎛ 2 ⎞
2⋅⎝tan (x) + 1⎠⋅tan(x)
[0, -∞⋅ⅈ, ∞⋅ⅈ]
0
0
-∞⋅ⅈ
-ⅈ
∞⋅ⅈ
ⅈ
34.
2
∂ ⎛ 3 2 ⎞
───⎝a⋅x + b⋅x + c⋅x + d⎠
2
∂x
2⋅(3⋅a⋅x + b)
⎡-b ⎤
⎢───⎥
⎣3⋅a⎦
x
3
b⋅c 2⋅b
d - ─── + ─────
3⋅a 2
27⋅a
$
HTML5
<div id="graph0"></div> <pre id="output0"></pre> <label for="r0">r = </label> <input id="r0" type="number" min="0" value="0.5"> <label for="dx">dx = </label> <input id="dx" type="number" min="0" step="0.0001" value="0.001"> <br> <label for="x1">x1 = </label> <input id="x1" type="number" value="-5"> <label for="x2">x2 = </label> <input id="x2" type="number" value="5"> <br> <label for="y1">y1 = </label> <input id="y1" type="number" value="-5"> <label for="y2">y2 = </label> <input id="y2" type="number" value="5"> <br> <label for="dx0">dx0 = </label> <input id="dx0" type="number" min="0" value="0.1"> <button id="draw0">draw</button> <button id="clear0">clear</button> <script type="text/javascript" src="https://cdnjs.cloudflare.com/ajax/libs/d3/4.2.6/d3.min.js" integrity="sha256-5idA201uSwHAROtCops7codXJ0vja+6wbBrZdQ6ETQc=" crossorigin="anonymous"></script> <script src="sample33.js"></script>
JavaScript
let div0 = document.querySelector('#graph0'),
pre0 = document.querySelector('#output0'),
width = 600,
height = 600,
padding = 50,
btn0 = document.querySelector('#draw0'),
btn1 = document.querySelector('#clear0'),
input_r = document.querySelector('#r0'),
input_dx = document.querySelector('#dx'),
input_x1 = document.querySelector('#x1'),
input_x2 = document.querySelector('#x2'),
input_y1 = document.querySelector('#y1'),
input_y2 = document.querySelector('#y2'),
input_dx0 = document.querySelector('#dx0'),
inputs = [input_r, input_dx, input_x1, input_x2, input_y1, input_y2,
input_dx0],
p = (x) => pre0.textContent += x + '\n',
range = (start, end, step=1) => {
let res = [];
for (let i = start; i < end; i += step) {
res.push(i);
}
return res;
};
let f1 = (x) => 1 / Math.cos(x) ** 2,
f2 = (x) => Math.sin(2 * x) / Math.cos(x) ** 4,
g = (x0) => (x) => f2(x0) * (x - x0) + f1(x0);
let draw = () => {
pre0.textContent = '';
let r = parseFloat(input_r.value),
dx = parseFloat(input_dx.value),
x1 = parseFloat(input_x1.value),
x2 = parseFloat(input_x2.value),
y1 = parseFloat(input_y1.value),
y2 = parseFloat(input_y2.value),
dx0 = parseFloat(input_dx0.value);
if (r === 0 || dx === 0 || x1 > x2 || y1 > y2) {
return;
}
let points = [],
lines = [],
fns = [[f1, 'blue']],
fns1 = [],
fns2 = [[g, 'green']];
fns.forEach((o) => {
let [fn, color] = o;
for (let x = x1; x <= x2; x += dx) {
let y = fn(x);
if (Math.abs(y) < Infinity) {
points.push([x, y, color]);
}
}
});
fns1.forEach((o) => {
let [fn, color] = o;
lines.push([x1, fn(x1), x2, fn(x2), color]);
});
fns2.forEach((o) => {
let [fn, color] = o;
for (let x = x1; x <= x2; x += dx0) {
let g = fn(x);
lines.push([x1, g(x1), x2, g(x2), color]);
}
});
let xscale = d3.scaleLinear()
.domain([x1, x2])
.range([padding, width - padding]);
let yscale = d3.scaleLinear()
.domain([y1, y2])
.range([height - padding, padding]);
let xaxis = d3.axisBottom().scale(xscale);
let yaxis = d3.axisLeft().scale(yscale);
div0.innerHTML = '';
let svg = d3.select('#graph0')
.append('svg')
.attr('width', width)
.attr('height', height);
svg.selectAll('line')
.data([[x1, 0, x2, 0], [0, y1, 0, y2]].concat(lines))
.enter()
.append('line')
.attr('x1', (d) => xscale(d[0]))
.attr('y1', (d) => yscale(d[1]))
.attr('x2', (d) => xscale(d[2]))
.attr('y2', (d) => yscale(d[3]))
.attr('stroke', (d) => d[4] || 'black');
svg.selectAll('circle')
.data(points)
.enter()
.append('circle')
.attr('cx', (d) => xscale(d[0]))
.attr('cy', (d) => yscale(d[1]))
.attr('r', r)
.attr('fill', (d) => d[2] || 'green');
svg.append('g')
.attr('transform', `translate(0, ${height - padding})`)
.call(xaxis);
svg.append('g')
.attr('transform', `translate(${padding}, 0)`)
.call(yaxis);
[fns, fns1, fns2].forEach((fs) => p(fs.join('\n')));
};
inputs.forEach((input) => input.onchange = draw);
btn0.onclick = draw;
btn1.onclick = () => pre0.textContent = '';
draw();
0 コメント:
コメントを投稿