学習環境
- Surface 3 (4G LTE)、Surface 3 タイプ カバー、Surface ペン(端末)
- Windows 10 Pro (OS)
- 数式入力ソフト(TeX, MathML): MathType
- MathML対応ブラウザ: Firefox、Safari
- MathML非対応ブラウザ(Internet Explorer, Google Chrome...)用JavaScript Library: MathJax
- 参考書籍
数学読本〈4〉数列の極限,順列/順列・組合せ/確率/関数の極限と微分法(松坂 和夫(著)、岩波書店)の第17章(関数の変化をとらえる - 関数の極限と微分法)、17.5(いろいろな関数の導関数)、三角関数の微分、問44、45、46.を取り組んでみる。
コード(Emacs)
Python 3
#!/usr/bin/env python3
# -*- coding: utf-8 -*-
from sympy import pprint, symbols, sin, cos, tan, pi, Derivative
print('46.')
x = symbols('x')
funcs = [(sin(x), pi / 4),
(cos(x), pi / 6),
(sin(x) * cos(x), 3 * pi / 2),
(tan(x), - pi / 4),
(1 / sin(x), -pi / 3)]
for i, (f, x0) in enumerate(funcs, 1):
print('({})'.format(i))
pprint(f)
d = Derivative(f, x)
f1 = d.doit()
pprint(d)
pprint(f1)
pprint(f1.subs({x: x0}))
入出力結果(Terminal, IPython)
$ ./sample44.py
46.
(1)
sin(x)
d
──(sin(x))
dx
cos(x)
√2
──
2
(2)
cos(x)
d
──(cos(x))
dx
-sin(x)
-1/2
(3)
sin(x)⋅cos(x)
d
──(sin(x)⋅cos(x))
dx
2 2
- sin (x) + cos (x)
-1
(4)
tan(x)
d
──(tan(x))
dx
2
tan (x) + 1
2
(5)
1
──────
sin(x)
d ⎛ 1 ⎞
──⎜──────⎟
dx⎝sin(x)⎠
-cos(x)
────────
2
sin (x)
-2/3
$
HTML5
<div id="graph0"></div> <pre id="output0"></pre> <label for="r0">r = </label> <input id="r0" type="number" min="0" value="0.5"> <label for="dx">dx = </label> <input id="dx" type="number" min="0" step="0.0001" value="0.001"> <br> <label for="x1">x1 = </label> <input id="x1" type="number" value="-10"> <label for="x2">x2 = </label> <input id="x2" type="number" value="10"> <br> <label for="y1">y1 = </label> <input id="y1" type="number" value="-10"> <label for="y2">y2 = </label> <input id="y2" type="number" value="10"> <br> <label for="x0">x0 = </label> <input id="x0" type="number" step="0.1" value="1"> <button id="draw0">draw</button> <button id="clear0">clear</button> <script type="text/javascript" src="https://cdnjs.cloudflare.com/ajax/libs/d3/4.2.6/d3.min.js" integrity="sha256-5idA201uSwHAROtCops7codXJ0vja+6wbBrZdQ6ETQc=" crossorigin="anonymous"></script> <script src="sample44.js"></script>
JavaScript
let div0 = document.querySelector('#graph0'),
pre0 = document.querySelector('#output0'),
width = 600,
height = 600,
padding = 50,
btn0 = document.querySelector('#draw0'),
btn1 = document.querySelector('#clear0'),
input_r = document.querySelector('#r0'),
input_dx = document.querySelector('#dx'),
input_x1 = document.querySelector('#x1'),
input_x2 = document.querySelector('#x2'),
input_y1 = document.querySelector('#y1'),
input_y2 = document.querySelector('#y2'),
input_x0 = document.querySelector('#x0'),
inputs = [input_r, input_dx, input_x1, input_x2, input_y1, input_y2,
input_x0],
p = (x) => pre0.textContent += x + '\n',
range = (start, end, step=1) => {
let res = [];
for (let i = start; i < end; i += step) {
res.push(i);
}
return res;
};
let f = (x) => 1 / Math.tan(x),
f1 = (x) => -1 / Math.sin(x) ** 2;
let draw = () => {
pre0.textContent = '';
let r = parseFloat(input_r.value),
dx = parseFloat(input_dx.value),
x1 = parseFloat(input_x1.value),
x2 = parseFloat(input_x2.value),
y1 = parseFloat(input_y1.value),
y2 = parseFloat(input_y2.value),
x0 = parseFloat(input_x0.value);
if (r === 0 || dx === 0 || x1 > x2 || y1 > y2) {
return;
}
let points = [],
g = (x) => f1(x0) * (x - x0) + f(x0);
for (let x = x1; x <= x2; x += dx) {
let y = f(x);
if (Math.abs(y) < Infinity) {
points.push([x, y]);
}
}
let lines = [[x1, g(x1), x2, g(x2)]];
let xscale = d3.scaleLinear()
.domain([x1, x2])
.range([padding, width - padding]);
let yscale = d3.scaleLinear()
.domain([y1, y2])
.range([height - padding, padding]);
let xaxis = d3.axisBottom().scale(xscale);
let yaxis = d3.axisLeft().scale(yscale);
div0.innerHTML = '';
let svg = d3.select('#graph0')
.append('svg')
.attr('width', width)
.attr('height', height);
svg.selectAll('line')
.data([[x1, 0, x2, 0], [0, y1, 0, y2]].concat(lines))
.enter()
.append('line')
.attr('x1', (d) => xscale(d[0]))
.attr('y1', (d) => yscale(d[1]))
.attr('x2', (d) => xscale(d[2]))
.attr('y2', (d) => yscale(d[3]))
.attr('stroke', (d, i) => i <= 1 ? 'black' : 'blue');
svg.selectAll('circle')
.data(points)
.enter()
.append('circle')
.attr('cx', (d) => xscale(d[0]))
.attr('cy', (d) => yscale(d[1]))
.attr('r', r)
.attr('fill', 'red');
svg.append('g')
.attr('transform', `translate(0, ${height - padding})`)
.call(xaxis);
svg.append('g')
.attr('transform', `translate(${padding}, 0)`)
.call(yaxis);
};
inputs.forEach((input) => input.onchange = draw);
btn0.onclick = draw;
btn1.onclick = () => pre0.textContent = '';
draw();
0 コメント:
コメントを投稿