学習環境
- Surface 3 (4G LTE)、Surface 3 タイプ カバー、Surface ペン(端末)
- Windows 10 Pro (OS)
- 数式入力ソフト(TeX, MathML): MathType
- MathML対応ブラウザ: Firefox、Safari
- MathML非対応ブラウザ(Internet Explorer, Google Chrome...)用JavaScript Library: MathJax
- Pythonからはじめる数学入門(参考書籍)
解析入門〈1〉(松坂 和夫(著)、岩波書店)の第5章(各種の初等関数)、5.4(三角関数(続き)、逆三角関数)、問題4、5.を取り組んでみる。
コード(Emacs)
Python 3
#!/usr/bin/env python3
# -*- coding: utf-8 -*-
from sympy import Symbol, symbols, Derivative, sqrt, sin, cos, exp, pi, log, solve, pprint
print('4')
n = Symbol('n', integer=True, positive=True)
x = Symbol('x')
expr1 = exp(x) * sin(x)
expr2 = sqrt(2) ** n * exp(x) * sin(x + n * pi / 4)
pprint(expr1)
pprint(expr2)
for i in range(10):
print('n = {}'.format(i + 1))
d = Derivative(expr1, x, i).doit()
pprint(d)
expr = expr2.subs({n: i})
pprint(expr)
print((d - expr).expand() == 0)
print('5.')
a, b = symbols('a b')
x = Symbol('x', nonzero=True)
f = a * cos(log(x)) + b * sin(log(x))
pprint(f)
print('(a)')
f1 = Derivative(f, x, 1).doit()
f2 = Derivative(f, x, 2).doit()
pprint(f1)
pprint(f2)
expr = x ** 2 * f2 + x * f1 + f
pprint(expr)
print(expr.expand() == 0)
print('(b)')
for i in range(10):
print('n = {0}'.format(i + 1))
expr = x**n * Derivative(f, x, i).doit()
pprint(expr)
入出力結果(Terminal, IPython)
$ ./sample4.py
4
x
ℯ ⋅sin(x)
n
─
2 x ⎛π⋅n ⎞
2 ⋅ℯ ⋅sin⎜─── + x⎟
⎝ 4 ⎠
n = 1
x
ℯ ⋅sin(x)
x
ℯ ⋅sin(x)
True
n = 2
x x
ℯ ⋅sin(x) + ℯ ⋅cos(x)
x ⎛ π⎞
√2⋅ℯ ⋅sin⎜x + ─⎟
⎝ 4⎠
False
n = 3
x
2⋅ℯ ⋅cos(x)
x
2⋅ℯ ⋅cos(x)
True
n = 4
x
2⋅(-sin(x) + cos(x))⋅ℯ
x ⎛ π⎞
2⋅√2⋅ℯ ⋅cos⎜x + ─⎟
⎝ 4⎠
False
n = 5
x
-4⋅ℯ ⋅sin(x)
x
-4⋅ℯ ⋅sin(x)
True
n = 6
x
-4⋅(sin(x) + cos(x))⋅ℯ
x ⎛ π⎞
-4⋅√2⋅ℯ ⋅sin⎜x + ─⎟
⎝ 4⎠
False
n = 7
x
-8⋅ℯ ⋅cos(x)
x
-8⋅ℯ ⋅cos(x)
True
n = 8
x
8⋅(sin(x) - cos(x))⋅ℯ
x ⎛ π⎞
-8⋅√2⋅ℯ ⋅cos⎜x + ─⎟
⎝ 4⎠
False
n = 9
x
16⋅ℯ ⋅sin(x)
x
16⋅ℯ ⋅sin(x)
True
n = 10
x
16⋅(sin(x) + cos(x))⋅ℯ
x ⎛ π⎞
16⋅√2⋅ℯ ⋅sin⎜x + ─⎟
⎝ 4⎠
False
5.
a⋅cos(log(x)) + b⋅sin(log(x))
(a)
a⋅sin(log(x)) b⋅cos(log(x))
- ───────────── + ─────────────
x x
a⋅sin(log(x)) - a⋅cos(log(x)) - b⋅sin(log(x)) - b⋅cos(log(x))
─────────────────────────────────────────────────────────────
2
x
⎛ a⋅sin(log(x)) b⋅cos(log(x))⎞
a⋅sin(log(x)) - b⋅cos(log(x)) + x⋅⎜- ───────────── + ─────────────⎟
⎝ x x ⎠
True
(b)
n = 1
n
x ⋅(a⋅cos(log(x)) + b⋅sin(log(x)))
n = 2
n ⎛ a⋅sin(log(x)) b⋅cos(log(x))⎞
x ⋅⎜- ───────────── + ─────────────⎟
⎝ x x ⎠
n = 3
n
x ⋅(a⋅sin(log(x)) - a⋅cos(log(x)) - b⋅sin(log(x)) - b⋅cos(log(x)))
──────────────────────────────────────────────────────────────────
2
x
n = 4
n
x ⋅(-a⋅sin(log(x)) + 3⋅a⋅cos(log(x)) + 3⋅b⋅sin(log(x)) + b⋅cos(log(x)))
───────────────────────────────────────────────────────────────────────
3
x
n = 5
n
-10⋅x ⋅(a⋅cos(log(x)) + b⋅sin(log(x)))
───────────────────────────────────────
4
x
n = 6
n
10⋅x ⋅(a⋅sin(log(x)) + 4⋅a⋅cos(log(x)) + 4⋅b⋅sin(log(x)) - b⋅cos(log(x)))
─────────────────────────────────────────────────────────────────────────
5
x
n = 7
n
10⋅x ⋅(-9⋅a⋅sin(log(x)) - 19⋅a⋅cos(log(x)) - 19⋅b⋅sin(log(x)) + 9⋅b⋅cos(log(x))
───────────────────────────────────────────────────────────────────────────────
6
x
)
─
n = 8
n
10⋅x ⋅(73⋅a⋅sin(log(x)) + 105⋅a⋅cos(log(x)) + 105⋅b⋅sin(log(x)) - 73⋅b⋅cos(log(
───────────────────────────────────────────────────────────────────────────────
7
x
x)))
────
n = 9
n
20⋅x ⋅(-308⋅a⋅sin(log(x)) - 331⋅a⋅cos(log(x)) - 331⋅b⋅sin(log(x)) + 308⋅b⋅cos(l
───────────────────────────────────────────────────────────────────────────────
8
x
og(x)))
───────
n = 10
n
1300⋅x ⋅(43⋅a⋅sin(log(x)) + 36⋅a⋅cos(log(x)) + 36⋅b⋅sin(log(x)) - 43⋅b⋅cos(log(
───────────────────────────────────────────────────────────────────────────────
9
x
x)))
────
$
0 コメント:
コメントを投稿