学習環境
- Surface 3 (4G LTE)、Surface 3 タイプ カバー、Surface ペン(端末)
- Windows 10 Pro (OS)
- 数式入力ソフト(TeX, MathML): MathType
- MathML対応ブラウザ: Firefox、Safari
- MathML非対応ブラウザ(Internet Explorer, Google Chrome...)用JavaScript Library: MathJax
- 参考書籍
解析入門〈1〉(松坂 和夫(著)、岩波書店)の第5章(各種の初等関数)、5.4(三角関数(続き)、逆三角関数)、問題2.を取り組んでみる。
nコード(Emacs)
Python 3
#!/usr/bin/env python3
# -*- coding: utf-8 -*-
from sympy import Symbol, Limit, S, sin, cos, pi, solve, product, pprint
θ = Symbol('θ', positive=True)
i = Symbol('i')
n = Symbol('n', positive=True)
expr = product(cos(θ / 2**i), (i, 1, n))
pprint(expr)
try:
l = Limit(expr, n, S.Infinity)
pprint(l)
result = l.doit()
pprint(result)
except Exception as err:
print(type(err), err)
入出力結果(Terminal, IPython)
$ ./sample2.py
n
┬────┬
│ │ ⎛ -i ⎞
│ │ cos⎝2 ⋅θ⎠
│ │
i = 1
n
┬────┬
│ │ ⎛ -i ⎞
lim │ │ cos⎝2 ⋅θ⎠
n─→∞│ │
i = 1
<class 'NotImplementedError'>
$
HTML5
<div id="graph0"></div> <pre id="output0"></pre> <label for="theta0">θ = </label> <input id="theta0" type="number" min="0.001" step="0.001" max="1.5707963267948965" value="1.2"> <label for="n0">n = </label> <input id="n0" type="number" min="1" step="1" value="10"> <button id="draw0">draw</button> <button id="clear0">clear</button> <script type="text/javascript" src="https://cdnjs.cloudflare.com/ajax/libs/d3/4.2.6/d3.min.js" integrity="sha256-5idA201uSwHAROtCops7codXJ0vja+6wbBrZdQ6ETQc=" crossorigin="anonymous"></script> <script src="sample2.js"></script>
JavaScript
let div0 = document.querySelector('#graph0'),
pre0 = document.querySelector('#output0'),
width = 600,
height = 600,
padding = 50,
btn0 = document.querySelector('#draw0'),
btn1 = document.querySelector('#clear0'),
input_theta = document.querySelector('#theta0'),
input_n = document.querySelector('#n0'),
inputs = [input_theta, input_n],
p = (x) => pre0.textContent += x + '\n';
let draw = () => {
pre0.textContent = '';
let theta = parseFloat(input_theta.value),
n = parseInt(input_n.value, 10),
l = Math.sin(theta) / theta;
let f = (n) => {
let result = 1;
for (let i = 1; i <= n; i += 1) {
result *= Math.cos(theta / 2 ** i);
}
return result;
};
let points = [];
for (let i = 1; i <= n; i += 1) {
points.push([i, f(i)]);
}
let ys = points.map((o) => o[1]),
d1 = Math.min(l - 0.1, ...ys),
d2 = Math.max(l + 0.1, ...ys);
let xscale = d3.scaleLinear()
.domain([0, n])
.range([padding, width - padding]);
let yscale = d3.scaleLinear()
.domain([d1, d2])
.range([height - padding, padding]);
let xaxis = d3.axisBottom().scale(xscale);
let yaxis = d3.axisLeft().scale(yscale);
div0.innerHTML = '';
let svg = d3.select('#graph0')
.append('svg')
.attr('width', width)
.attr('height', height);
svg.selectAll('circle')
.data(points)
.enter()
.append('circle')
.attr('cx', (d) => xscale(d[0]))
.attr('cy', (d) => yscale(d[1]))
.attr('r', 2)
.attr('fill', 'green');
svg.selectAll('line')
.data([[0, l, n, l]])
.enter()
.append('line')
.attr('x1', (d) => xscale(d[0]))
.attr('y1', (d) => yscale(d[1]))
.attr('x2', (d) => xscale(d[2]))
.attr('y2', (d) => yscale(d[3]))
.attr('stroke', 'blue');
svg.append('g')
.attr('transform', `translate(0, ${yscale(0)})`)
.call(xaxis);
svg.append('g')
.attr('transform', `translate(${xscale(0)}, 0)`)
.call(yaxis);
}
inputs.forEach((input) => input.onchange = draw);
btn0.onclick = draw;
btn1.onclick = () => pre0.textContent = '';
draw();
0 コメント:
コメントを投稿