開発環境
- OS X Mavericks - Apple(OS)
- Emacs (CUI)、BBEdit - Bare Bones Software, Inc. (GUI) (Text Editor)
- Scheme (プログラミング言語)
- Gauche (処理系)
計算機プログラムの構造と解釈(Gerald Jay Sussman(原著)、Julie Sussman(原著)、Harold Abelson(原著)、和田 英一(翻訳)、ピアソンエデュケーション、原書: Structure and Interpretation of Computer Programs (MIT Electrical Engineering and Computer Science)(SICP))の2(データによる抽象の構築)、2.3(記号データ)、2.3.3(例: 集合の表現)、二進木としての集合、問題 2.65.を解いてみる。
その他参考書籍
- Instructor's Manual to Accompany Structure & Interpretation of Computer Programs
- プログラミングGauche (Kahuaプロジェクト (著), 川合 史朗 (監修), オライリージャパン)
問題 2.65.
コード(BBEdit, Emacs)
sample.scm
#!/usr/bin/env gosh
;; -*- coding: utf-8 -*-
;; これまでに書いた手続き
(load "./tree.scm")
(define (union-set set1 set2)
(define (union-list list1 list2)
(cond ((null? list1) list2)
((null? list2) list1)
((equal? (car list1)
(car list2))
(cons (car list1)
(union-list (cdr list1)
(cdr list2))))
((< (car list1)
(car list2))
(cons (car list1)
(union-list (cdr list1)
list2)))
(else
(cons (car list2)
(union-list list1
(cdr list2))))))
(list->tree (union-list (tree->list set1)
(tree->list set2))))
(define (intersection-set set1 set2)
(define (intersection-list list1 list2)
(cond ((or (null? list1)
(null? list2))
'())
((equal? (car list1)
(car list2))
(cons (car list1)
(intersection-list (cdr list1)
(cdr list2))))
((< (car list1)
(car list2))
(intersection-list (cdr list1)
list2))
(else
(intersection-list list1
(cdr list2)))))
(list->tree (intersection-list (tree->list set1)
(tree->list set2))))
(define set0 (list->tree '()))
(define set1 (list->tree '(1)))
(define set2 (list->tree '(1 2 3 4 5)))
(define set3 (list->tree '(1 2 3 4 5)))
(define set4 (list->tree '(1 3 5 7 9)))
(define set5 (list->tree '(2 4 6 8 10)))
(define sets (list set0 set1 set2 set3 set4 set5))
(for-each (lambda (pair)
(let ((set1 (car pair))
(set2 (cdr pair)))
(print "--------------------------------------------------")
(print "set1")
(print (tree->list set1))
(print "set2")
(print (tree->list set2))
(print "union")
(print (tree->list (union-set set1
set2)))
(print "intersection")
(print (tree->list (intersection-set set1
set2)))))
(flatmap (lambda (set1)
(map (lambda (set2)
(cons set1
set2))
sets))
sets))
入出力結果(Terminal(gosh), REPL(Read, Eval, Print, Loop))
$ ./sample.scm -------------------------------------------------- set1 () set2 () union () intersection () -------------------------------------------------- set1 () set2 (1) union (1) intersection () -------------------------------------------------- set1 () set2 (1 2 3 4 5) union (1 2 3 4 5) intersection () -------------------------------------------------- set1 () set2 (1 2 3 4 5) union (1 2 3 4 5) intersection () -------------------------------------------------- set1 () set2 (1 3 5 7 9) union (1 3 5 7 9) intersection () -------------------------------------------------- set1 () set2 (2 4 6 8 10) union (2 4 6 8 10) intersection () -------------------------------------------------- set1 (1) set2 () union (1) intersection () -------------------------------------------------- set1 (1) set2 (1) union (1) intersection (1) -------------------------------------------------- set1 (1) set2 (1 2 3 4 5) union (1 2 3 4 5) intersection (1) -------------------------------------------------- set1 (1) set2 (1 2 3 4 5) union (1 2 3 4 5) intersection (1) -------------------------------------------------- set1 (1) set2 (1 3 5 7 9) union (1 3 5 7 9) intersection (1) -------------------------------------------------- set1 (1) set2 (2 4 6 8 10) union (1 2 4 6 8 10) intersection () -------------------------------------------------- set1 (1 2 3 4 5) set2 () union (1 2 3 4 5) intersection () -------------------------------------------------- set1 (1 2 3 4 5) set2 (1) union (1 2 3 4 5) intersection (1) -------------------------------------------------- set1 (1 2 3 4 5) set2 (1 2 3 4 5) union (1 2 3 4 5) intersection (1 2 3 4 5) -------------------------------------------------- set1 (1 2 3 4 5) set2 (1 2 3 4 5) union (1 2 3 4 5) intersection (1 2 3 4 5) -------------------------------------------------- set1 (1 2 3 4 5) set2 (1 3 5 7 9) union (1 2 3 4 5 7 9) intersection (1 3 5) -------------------------------------------------- set1 (1 2 3 4 5) set2 (2 4 6 8 10) union (1 2 3 4 5 6 8 10) intersection (2 4) -------------------------------------------------- set1 (1 2 3 4 5) set2 () union (1 2 3 4 5) intersection () -------------------------------------------------- set1 (1 2 3 4 5) set2 (1) union (1 2 3 4 5) intersection (1) -------------------------------------------------- set1 (1 2 3 4 5) set2 (1 2 3 4 5) union (1 2 3 4 5) intersection (1 2 3 4 5) -------------------------------------------------- set1 (1 2 3 4 5) set2 (1 2 3 4 5) union (1 2 3 4 5) intersection (1 2 3 4 5) -------------------------------------------------- set1 (1 2 3 4 5) set2 (1 3 5 7 9) union (1 2 3 4 5 7 9) intersection (1 3 5) -------------------------------------------------- set1 (1 2 3 4 5) set2 (2 4 6 8 10) union (1 2 3 4 5 6 8 10) intersection (2 4) -------------------------------------------------- set1 (1 3 5 7 9) set2 () union (1 3 5 7 9) intersection () -------------------------------------------------- set1 (1 3 5 7 9) set2 (1) union (1 3 5 7 9) intersection (1) -------------------------------------------------- set1 (1 3 5 7 9) set2 (1 2 3 4 5) union (1 2 3 4 5 7 9) intersection (1 3 5) -------------------------------------------------- set1 (1 3 5 7 9) set2 (1 2 3 4 5) union (1 2 3 4 5 7 9) intersection (1 3 5) -------------------------------------------------- set1 (1 3 5 7 9) set2 (1 3 5 7 9) union (1 3 5 7 9) intersection (1 3 5 7 9) -------------------------------------------------- set1 (1 3 5 7 9) set2 (2 4 6 8 10) union (1 2 3 4 5 6 7 8 9 10) intersection () -------------------------------------------------- set1 (2 4 6 8 10) set2 () union (2 4 6 8 10) intersection () -------------------------------------------------- set1 (2 4 6 8 10) set2 (1) union (1 2 4 6 8 10) intersection () -------------------------------------------------- set1 (2 4 6 8 10) set2 (1 2 3 4 5) union (1 2 3 4 5 6 8 10) intersection (2 4) -------------------------------------------------- set1 (2 4 6 8 10) set2 (1 2 3 4 5) union (1 2 3 4 5 6 8 10) intersection (2 4) -------------------------------------------------- set1 (2 4 6 8 10) set2 (1 3 5 7 9) union (1 2 3 4 5 6 7 8 9 10) intersection () -------------------------------------------------- set1 (2 4 6 8 10) set2 (2 4 6 8 10) union (2 4 6 8 10) intersection (2 4 6 8 10) $
0 コメント:
コメントを投稿