開発環境
- OS X Lion - Apple(OS)
- Emacs、BBEdit - Bare Bones Software, Inc. (Text Editor)
- プログラミング言語: MIT/GNU Scheme
計算機プログラムの構造と解釈(Gerald Jay Sussman(原著)、Julie Sussman(原著)、Harold Abelson(原著)、和田 英一(翻訳)、ピアソンエデュケーション)の2(データによる抽象の構築)、2.3(記号データ)、2.3.2(例: 記号微分)の問題 2.58、a、bを解いてみる。
その他参考書籍
問題 2.58
a.
コード
sample.scm
(define (deriv exp var)
(cond ((number? exp) 0)
((variable? exp)
(if (same-variable? exp var) 1 0))
((sum? exp)
(make-sum (deriv (addend exp) var)
(deriv (augend exp) var)))
((product? exp)
(make-sum (make-product (multiplier exp)
(deriv (multiplicand exp) var))
(make-product (deriv (multiplier exp) var)
(multiplicand exp))))
((exponentiation? exp)
(let ((n (exponent exp))
(u (base exp)))
(make-product n
(make-product (make-exponentiation u
(make-sum n -1))
(deriv u var)))))
(else (error "unkown expression type -- DERIV" exp))))
(define (make-sum a1 a2)
(cond ((=number? a1 0) a2)
((=number? a2 0) a1)
((and (number? a1) (number? a2)) (+ a1 a2))
(else (list a1 '+ a2))))
(define (addend s) (car s))
(define (augend s) (caddr s))
(define (make-product m1 m2)
(cond ((or (=number? m1 0) (=number? m2 0)) 0)
((=number? m1 1) m2)
((=number? m2 1) m1)
((and (number? m1) (number? m2)) (* m1 m2))
(else (list m1 '* m2))))
(define (multiplier p) (car p))
(define (multiplicand p) (caddr p))
(define (variable? x) (symbol? x))
(define (same-variable? v1 v2)
(and (variable? v1) (variable? v2) (eq? v1 v2)))
(define (sum? x)
(and (pair? x) (eq? (cadr x) '+)))
(define (product? x)
(and (pair? x) (eq? (cadr x) '*)))
(define (exponentiation? x)
(and (pair? x) (eq? (cadr x) '**)))
(define (base x) (car x))
(define (exponent x) (caddr x))
(define (make-exponentiation a b)
(cond ((=number? b 0) 1)
((=number? b 1) a)
(else (list a '** b))))
(define (=number? exp num)
(and (number? exp) (= exp num)))
(define a '(x + (3 * (x + (y + 2)))))
入出力結果(Terminal, REPL(Read, Eval, Print, Loop))
1 ]=> (deriv a 'x) ;Value: 4
b.
コード
sample.scm
(define (deriv exp var)
(cond ((number? exp) 0)
((variable? exp)
(if (same-variable? exp var) 1 0))
((sum? exp)
(make-sum (deriv (addend exp) var)
(deriv (augend exp) var)))
((product? exp)
(make-sum (make-product (multiplier exp)
(deriv (multiplicand exp) var))
(make-product (deriv (multiplier exp) var)
(multiplicand exp))))
((exponentiation? exp)
(let ((n (exponent exp))
(u (base exp)))
(make-product n
(make-product (make-exponentiation u
(make-sum n -1))
(deriv u var)))))
(else (error "unkown expression type -- DERIV" exp))))
(define (make-sum a1 a2)
(cond ((=number? a1 0) a2)
((=number? a2 0) a1)
((and (number? a1) (number? a2)) (+ a1 a2))
; 追加
((eq? a1 a2) (list 2 '* a1))
(else (list a1 '+ a2))))
; 修正箇所
(define (addend s)
(define (iter result s)
(if (eq? (cadr s) '+)
(if (null? result)
(car s)
(append result (list (car s))))
(iter (append result (list (car s))) (cdr s))))
(iter '() s))
; 修正箇所
(define (augend s)
(if (eq? (cadr s) '+)
(let ((a (cddr s)))
(if (and (pair? a) (null? (cdr a)))
(car a)
a))
(augend (cddr s))))
(define (make-product m1 m2)
(cond ((or (=number? m1 0) (=number? m2 0)) 0)
((=number? m1 1) m2)
((=number? m2 1) m1)
((and (number? m1) (number? m2)) (* m1 m2))
(else (list m1 '* m2))))
(define (multiplier p) (car p))
; 修正箇所
(define (multiplicand p)
(let ((a (cddr p)))
(if (and (pair? a) (null? (cdr a)))
(car a)
a)))
(define (variable? x) (symbol? x))
(define (same-variable? v1 v2)
(and (variable? v1) (variable? v2) (eq? v1 v2)))
;(define (sum? x)
; (and (pair? x) (eq? (cadr x) '+)))
(define (sum? x) (memq '+ x))
(define (product? x) (not (memq '+ x)))
(define (exponentiation? x)
(and (pair? x) (eq? (cadr x) '**)))
(define (base x) (car x))
(define (exponent x) (caddr x))
(define (make-exponentiation a b)
(cond ((=number? b 0) 1)
((=number? b 1) a)
(else (list a '** b))))
(define (=number? exp num)
(and (number? exp) (= exp num)))
(define a '(x + (3 * (x + (y + 2)))))
入出力結果(Terminal, REPL(Read, Eval, Print, Loop))
]=> (deriv '(x + x * x) 'x) ;Value 2: (1 + (2 * x)) 1 ]=> (deriv '(x + (x * x)) 'x) ;Value 3: (1 + (2 * x)) 1 ]=> (deriv '((x + x) * x) 'x) ;Value 4: ((x + x) + (2 * x)) 1 ]=> (deriv '(2 * x) 'x) ;Value: 2 1 ]=> (deriv '(2 * x * x) 'x) ;Value 5: (2 * (2 * x)) 1 ]=> (deriv '(2 * x * x * x) 'x) ;Value 6: (2 * ((x * (2 * x)) + (x * x))) 1 ]=> (deriv '(2 * x * x * x * x) 'x) ;Value 7: (2 * ((x * ((x * (2 * x)) + (x * x))) + (x * x * x)))
ということで、不要な括弧は省き、乗算は加算より前に行う、微分プログラムが動作するような、適切な述語、選択子、構成子は設計できる。
0 コメント:
コメントを投稿